Annals of Biomedical Engineering

, Volume 46, Issue 5, pp 749–761 | Cite as

Investigating the Longitudinal Effect of Ovariectomy on Bone Properties Using a Novel Spatiotemporal Approach

  • Yongtao Lu
  • Yue Liu
  • Chengwei Wu
  • Junyan Li


Osteoporosis is the most common bone disease. However, the mechanism of osteoporosis-induced alterations in bone is still unclear. The aim of this study was to investigate the effects of osteoporosis on the structural, densitometric and mechanical properties of the whole tibia using in vivo μCT imaging, spatiotemporal analysis and finite element modeling. Twelve C57Bl/6 female mice were adopted. At 14 weeks of age, half of the mice were ovariectomized (OVX), and the other half were SHAM-operated. The whole right tibia was scanned using an in vivo μCT imaging system at 14, 16, 17, 18, 19, 20, 21 and 22 weeks. The image datasets were registered in order to precisely quantify the bone properties. The results showed that OVX led to a significant increase in the endosteal area across the whole tibia 4 weeks after OVX intervention but did not have a significant influence on the periosteal area. Additionally, the bone volume and mineral content significantly decreased only in the proximal regions, but these decreases did not have a significant influence on the stiffness and failure load of the tibia. This study demonstrated the application of a novel spatiotemporal approach in the comprehensive analysis of bone adaptations in the spatiotemporal space.


Osteoporosis Mouse tibia In vivo μCT Spatiotemporal analysis Finite element modeling 



This work was funded by the National Natural Science Foundation of China (11702057, 11772086), and the Open Fund from the State Key Laboratory of Structural Analysis for Industrial Equipment (GZ1611). The raw data analyzed and reported in this paper are obtained from the project funded by the UK National Centre for the Replacement, Refinement and Reduction of Animals in Research (NC3Rs), grant number: NC/K000780/1. The raw data are available in Open Access under CC-BY-NC license and can be retrieved with the following

Conflict of interest

The authors declare that there are no financial or personal relationships with other persons or organizations that might inappropriately influence this work.


  1. 1.
    Altman, A. R., W. J. Tseng, C. M. de Bakker, A. Chandra, S. Lan, B. K. Huh, S. Luo, M. B. Leonard, L. Qin, and X. S. Liu. Quantification of skeletal growth, modeling, and remodeling by in vivo micro computed tomography. Bone 81:370–379, 2015.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Ashman, R. B., S. C. Cowin, W. C. van Bushirk, and J. C. Rice. A continuous was technique for the measurement of the elastic properties of cortical bone. J. Biomech. 19:349–361, 1984.CrossRefGoogle Scholar
  3. 3.
    Ausk, B. J., P. Huber, S. Srinivasan, S. D. Bain, R. Y. Kwon, E. A. McNamara, S. L. Poliachik, C. L. Sybrowsky, and T. S. Gross. Metaphyseal and diaphyseal bone loss in the tibia following transient muscle paralysis are spatiotemporally distinct resorption events. Bone 57(2):413–422, 2013.CrossRefPubMedGoogle Scholar
  4. 4.
    Bayraktar, H. H., E. F. Morgan, G. L. Niebur, G. E. Morris, E. K. Wong, and T. M. Keaveny. Comparison of the elastic and yield properties of human femoral trabecular and cortical bone tissue. J. Biomech. 37:27–35, 2004.CrossRefPubMedGoogle Scholar
  5. 5.
    Birkhold, A. I., H. Razi, R. Weinkamer, G. N. Duda, S. Checa, and B. M. Willie. Monitoring in vivo (re)modeling: a computational approach using 4D microCT data to quantify bone surface movements. Bone 75:210–221, 2015.CrossRefPubMedGoogle Scholar
  6. 6.
    Bouxsein, M. L., S. K. Boyd, B. A. Christiansen, R. E. Guldberg, K. J. Jepsen, and R. Müller. Guidelines for assessment of bone microstructure in rodents using microcomputed tomography. J. Bone Miner. Res. 25(7):1468–1486, 2010.CrossRefPubMedGoogle Scholar
  7. 7.
    Bouxsein, M. L., K. S. Myers, K. L. Shultz, L. R. Donahue, C. J. Rosen, and W. G. Beamer. Ovariectomy-induced bone loss varies among inbred strains of mice. J. Bone Miner. Res. 20:1086–1092, 2005.CrossRefGoogle Scholar
  8. 8.
    Boyd, S. K., P. Davison, R. Müller, and J. A. Gasser. Monitoring individual morphological changes over time in ovariectomized rats by in vivo micro-computed tomography. Bone 39:854–862, 2006.CrossRefPubMedGoogle Scholar
  9. 9.
    Buie, H. R., G. M. Campbell, J. Klinck, J. A. MacNeil, and S. K. Boyd. Automatic segmentation of cortical and trabecular compartments based on a dual threshold technique for in vivo micro-CT bone analysis. Bone 41:505–515, 2007.CrossRefPubMedGoogle Scholar
  10. 10.
    Campbell, G. M., R. Bernhardt, D. Scharnweber, and S. K. Boyd. The bone architecture is enhanced with combined PTH and alendronate treatment compared to monotherapy while maintaining the state of surface mineralization in the OVX rat. Bone 49:225–232, 2011.CrossRefPubMedGoogle Scholar
  11. 11.
    Campbell, G. M., S. Tiwari, F. Grundmann, N. Purcz, C. Schem, and C. C. Gluer. Three-dimensional image registration improves the long-term precision of in vivo micro-computed tomographic measurements in anabolic and catabolic mouse models. Calcif. Tissue Int. 94:282–292, 2014.CrossRefPubMedGoogle Scholar
  12. 12.
    Chen, Y., E. Dall’Ara, K. Manda, E. Sales, R. Wallace, and P. Pankaj. Micro-CT based finite element models of cancellous bone predict accurately displacement once the boundary condition is well replicated: a validation study. J. Mech. Behav. Biomed. Mater. 65:644–651, 2017.CrossRefPubMedGoogle Scholar
  13. 13.
    Costa, M. C., G. Tozzi, L. Cristofolini, V. Danesi, M. Viceconti, and E. DallAra. Micro finite element models of the vertebral body: validation of local displacement predictions. PLoS ONE 12(7):e0180151, 2017.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Dall’Ara, E., D. Barber, and M. Viceconti. About the inevitable compromise between spatial resolution and accuracy of strain measurement for bone tissue: a 3D zero-strain study. J. Biomech. 47:2956–2963, 2014.CrossRefPubMedGoogle Scholar
  15. 15.
    de Bakker, C. M., A. R. Altman, W. J. Tseng, M. B. Tribble, C. Li, A. Chandra, L. Qin, and X. S. Liu. microCT-based, in vivo dynamic bone histomorphometry allows 3D evaluation of the early responses of bone resorption and formation to PTH and alendronate combination therapy. Bone 73:198–207, 2015.CrossRefPubMedGoogle Scholar
  16. 16.
    Easley, S. K., M. G. Jekir, A. J. Burghardt, M. Li, and T. M. Keavey. Contribution of the intra-specimen variations in tissue mineralization to PHT- and raloxifene-induced changes in stiffness of rat vertebrae. Bone 46:1162–1169, 2010.CrossRefPubMedGoogle Scholar
  17. 17.
    Glatt, V., E. Canalis, L. Stadmeyer, and M. Bouxsein. Age-related changes in trabecular architecture differ in female and male C57BL/6 J mice. J. Bone Miner. Res. 22(8):1197–1207, 2007.CrossRefPubMedGoogle Scholar
  18. 18.
    Klinck, J., and S. K. Boyd. The magnitude and rate of bone loss in ovariectomized mice differs among inbred strains as determined by longitudinal in vivo micro-computed tomography. Calcif. Tissue Int. 83:70–79, 2008.CrossRefPubMedGoogle Scholar
  19. 19.
    Klinck, J., G. M. Campbell, and S. K. Boyd. Radiation effects on bone architecture in mice and rats resulting from in vivo micro-computed tomography scanning. Med. Eng. Phys. 30:888–895, 2008.CrossRefPubMedGoogle Scholar
  20. 20.
    Laib, A., O. Barou, L. Vico, M. H. Lafage-Proust, C. Alexandre, and P. Rügsegger. 3D micro-computed tomography of trabecular and cortical bone architecture with application to a rat model of immobilisation osteoporosis. Med. Biol. Eng. Comput. 38:326–332, 2000.CrossRefPubMedGoogle Scholar
  21. 21.
    Laib, A., J. L. Kumer, S. Majumdar, and N. E. Lane. The temporal changes of trabecular architecture in ovariectomized rats assessed by microCT. Osteoporos. Int. 12:936–941, 2001.CrossRefPubMedGoogle Scholar
  22. 22.
    Lambers, F. M., G. Kuhn, F. A. Schulte, K. Koch, and R. Müller. Longitudinal assessment of in vivo bone dynamics in a mouse tail model of postmenopausal osteoporosis. Calcif. Tissue Int. 90:108–119, 2012.CrossRefPubMedGoogle Scholar
  23. 23.
    Levchuk, A., A. Zwahlen, C. Weigt, F. M. Lambers, S. D. Badilatti, F. A. Schulte, G. Kuhn, and R. Mueller. Large scale simulations of trabecular bone adaptation to loading and treatment. Clin. Biomech. 29(4):355–362, 2014.CrossRefGoogle Scholar
  24. 24.
    Lu, Y., M. Boudiffa, E. Dall Ara, I. Bellantuono, and M. Viceconti. Evaluation of in vivo measurement errors associated with micro-computed tomography scans by means of the bone surface distance approach. Med. Eng. Phys. 37:1091–1097, 2015.CrossRefPubMedGoogle Scholar
  25. 25.
    Lu, Y., M. Boudiffa, E. Dall Ara, I. Bellantuono, and M. Viceconti. Development of a protocol to quantify local bone adaptation over space and time: quantification of reproducibility. J. Biomech. 49:2095–2099, 2016.CrossRefPubMedGoogle Scholar
  26. 26.
    Lu, Y., M. Boudiffa, E. Dall’Ara, Y. Liu, I. Bellantuono, and M. Viceconti. Longitudinal effects of Parathyroid Hormone treatment on morphological, densitometric and mechanical properties of mouse tibia. J. Mech. Behav. Biomed. Mater. 75:244–251, 2017.CrossRefPubMedGoogle Scholar
  27. 27.
    Patel, T. K., M. D. Brodt, and M. J. Silva. Experimental and finite element analysis of strains induced by axial tibial compression in young-adult and old female C57Bl/6 mice. J. Biomech. 47:451–457, 2014.CrossRefPubMedGoogle Scholar
  28. 28.
    Pereira, A. F., B. Javaheri, A. A. Pitsillides, and S. J. Shefelbine. Predicting cortical bone adaptation to axial loading in the mouse tibia. J. R. Soc. Interface 12(110):0590, 2015.CrossRefPubMedGoogle Scholar
  29. 29.
    Pistoia, W., B. van Rietbergen, E. M. Lochmueller, C. A. Lill, F. Eckstein, and P. Ruegsegger. Estimation of distal radius failure load with micro-finite element analysis models based on three-dimensional peripheral quantitative computed tomography images. Bone 30(6):842–848, 2002.CrossRefPubMedGoogle Scholar
  30. 30.
    Prasad, J., B. P. Wiater, S. E. Nork, S. D. Bain, and T. S. Gross. Characterizing gait induced normal strains in a murine tibia cortical bone defect model. J. Biomech 43:2765–2770, 2010.CrossRefPubMedGoogle Scholar
  31. 31.
    Qasim, M., G. Farinella, J. Zhang, X. Li, L. Yang, R. Eastell, and M. Viceconti. Patient-specific finite element estimated femur strength as a predictor of the risk of hip fracture: the effect of methodological determinants. Osteoporos. Int. 27(9):2815–2822, 2016.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Razi, H., A. I. Birkhold, P. Zaslansky, R. Weinkamer, G. N. Duda, B. M. Willie, and S. Checa. Skeletal maturity leads to a reduction in the strain magnitudes induced within the bone: a murine tibia study. Acta Biomater. 13:301–310, 2015.CrossRefPubMedGoogle Scholar
  33. 33.
    Riggs, B. L., and L. J. Melton. The worldwide problem of osteoporosis: insights afforded by edidemiology. Bone 17:505s–511s, 1995.CrossRefPubMedGoogle Scholar
  34. 34.
    Somerville, J. M., R. M. Aspden, K. E. Armour, and D. M. Reid. Growth of C57Bl/6 mice and the material and mechanical properties of cortical bone from the tibia. Calcif. Tissue Int. 74:469–475, 2004.CrossRefPubMedGoogle Scholar
  35. 35.
    Vickerton, P., J. C. Jarvis, J. A. Gallagher, R. Akhtar, H. Sutherland, and N. Jeffery. Morphological and histological adaptation of muscle and bone to loading induced by repetitive activation of muscle. Proc. Biol. Sci. 281:20140786, 2014.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Webster, D. J., P. L. van Morley, G. H. Lethe, and R. Mueller. A novel in vivo mouse model for mechanically stimulated bone adaptation—a combined experimental and computational validation study. Comput. Methods Biomech. Biomed. Eng. 11:435–441, 2008.CrossRefGoogle Scholar
  37. 37.
    Wernle, J. D., T. A. Damron, M. J. Allen, and K. A. Mann. Local irradiation alters bone morphology and increases bone fragility in a mouse model. J. Biomech. 43:2738–2746, 2010.CrossRefPubMedGoogle Scholar
  38. 38.
    Yang, H., K. D. Butz, D. Duffy, G. L. Niebur, E. A. Nauman, and R. P. Main. Characterization of cancellous and cortical bone strain in the in vivo mouse tibial loading model using microCT-based finite element analysis. Bone 66:131–139, 2014.CrossRefPubMedGoogle Scholar

Copyright information

© Biomedical Engineering Society 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Structural Analysis for Industrial EquipmentDalian University of TechnologyDalianChina
  2. 2.Department of Engineering MechanicsDalian University of TechnologyDalianChina
  3. 3.Department of Mechanical EngineeringNational University of SingaporeSingaporeSingapore
  4. 4.Department of Design Engineering and Mathematics, School of Science and TechnologyMiddlesex UniversityLondonUK

Personalised recommendations