Advertisement

Annals of Biomedical Engineering

, Volume 46, Issue 5, pp 684–704 | Cite as

Nitinol Stents in the Femoropopliteal Artery: A Mechanical Perspective on Material, Design, and Performance

  • Kaspars Maleckis
  • Eric Anttila
  • Paul Aylward
  • William Poulson
  • Anastasia Desyatova
  • Jason MacTaggart
  • Alexey Kamenskiy
Article

Abstract

Endovascular stenting has matured into a commonly used treatment for peripheral arterial disease (PAD) due to its minimally invasive nature and associated reductions in short-term morbidity and mortality. The mechanical properties of the superelastic Nitinol alloy have played a major role in the explosion of peripheral artery stenting, with modern stents demonstrating reasonable resilience and durability. Yet in the superficial femoral and popliteal arteries, even the newest generation Nitinol stents continue to demonstrate clinical outcomes that leave significant room for improvement. Restenosis and progression of native arterial disease often lead to recurrence of symptoms and reinterventions that increase morbidity and health care expenditures. One of the main factors thought to be associated with stent failure in the femoropopliteal artery (FPA) is the unique and highly dynamic mechanical environment of the lower limb. Clinical and experimental data demonstrate that the FPA undergoes significant deformations with limb flexion. It is hypothesized that the inability of many existing stent designs to conform to these deformations likely plays a role in reconstruction failure, as repetitive movements of the leg and thigh combine with mechanical mismatch between the artery and the stent and result in mechanical damage to both the artery and the stent. In this review we will identify challenges and provide a mechanical perspective of FPA stenting, and then discuss current research directions with promise to provide a better understanding of Nitinol, specific features of stent design, and improved characterization of the biomechanical environment of the FPA to facilitate development of better stents for patients with PAD.

Keywords

Femoropopliteal artery Nitinol Stent Design Peripheral arterial disease 

Notes

Funding

This study was supported in part by the National Heart, Lung, And Blood Institute of the National Institutes of Health under Award Numbers R01 HL125736 and F32 HL124905.

References

  1. 1.
    Adam, D. J., J. D. Beard, T. Cleveland, J. Bell, A. W. Bradbury, J. F. Forbes, F. G. R. Fowkes, I. Gillepsie, C. V. Ruckley, G. Raab, and H. Storkey. Bypass versus angioplasty in severe ischaemia of the leg (BASIL): multicentre, randomised controlled trial. Lancet 366:1925–1934, 2005.PubMedCrossRefGoogle Scholar
  2. 2.
    Adlakha, S., M. Sheikh, J. Wu, M. W. Burket, U. Pandya, W. Colyer, E. Eltahawy, and C. J. Cooper. Stent fracture in the coronary and peripheral arteries. J. Interv. Cardiol. 23:411–419, 2010.PubMedCrossRefGoogle Scholar
  3. 3.
    Analysis, A. E. Stenting for peripheral artery disease of the lower extremities: an evidence-based analysis. Ont. Health Technol. Asses. Ser. 10:1–88, 2010.Google Scholar
  4. 4.
    Ansari, F., L. K. Pack, S. S. Brooks, and T. M. Morrison. Design considerations for studies of the biomechanical environment of the femoropopliteal arteries. J. Vasc. Surg. 58:804–813, 2013.PubMedCrossRefGoogle Scholar
  5. 5.
    Association, American Diabetes, and A. D. Association. Peripheral arterial disease in people with diabetes. Diabetes Care 26:3333–3341, 2003.CrossRefGoogle Scholar
  6. 6.
    ASTM. Standard test methods for in vitro pulsatile durability testing of vascular stents 1. Current 2011.  https://doi.org/10.1520/f2477-07.proper.Google Scholar
  7. 7.
    Auricchio, F., and R. L. Taylor. Shape-memory alloys: modelling and numerical simulations of the finite-strain superelastic behavior. Comput. Methods Appl. Mech. Eng. 143:175–194, 1997.CrossRefGoogle Scholar
  8. 8.
    Auricchio, F., R. L. Taylor, and J. Lubliner. Shape-memory alloys: macromodelling and numerical simulations of the superelastic behavior. Comput. Methods Appl. Mech. Eng. 146:281–312, 1997.CrossRefGoogle Scholar
  9. 9.
    Barras, C. D. J., and K. A. Myers. Nitinol: its use in vascular surgery and other applications. EJVES Extra 19:564–569, 2010.Google Scholar
  10. 10.
    Bartholomew, J., and J. Olin. Pathophysiology of peripheral arterial disease and risk factors for its development. Cleve. Clin. J. Med. 73:8–14, 2006.CrossRefGoogle Scholar
  11. 11.
    Bosiers, M. M. The Zilver® PTX® single arm study: 12-month results from the TASC C/D lesion subgroup. J. Cardiovasc. Surg. (Torino) 54:115–122, 2013.Google Scholar
  12. 12.
    Boyd, J. G., and D. C. Lagoudas. A thermodynamical constitutive model for shape memory materials. Part I. The monolithic shape memory alloy. Int. J. Plast. 12:805–842, 1996.CrossRefGoogle Scholar
  13. 13.
    Brinson, L. C., and R. Lammering. Finite element analysis of the behavior of shape memory alloys and their applications. Int. J. Solids Struct. 30:3261–3280, 1993.CrossRefGoogle Scholar
  14. 14.
    Buehler, W., J. Gilfrich, and R. Wiley. Effects of low-temperature phase changes on the mechanical properties of alloys near composition TiNi. J. Appl. Phys. 34:1475–1477, 1963.CrossRefGoogle Scholar
  15. 15.
    Chang, C.-H., J.-W. Lin, J. Hsu, L.-C. Wu, and M.-S. Lai. Stent revascularization versus bypass surgery for peripheral artery disease in type 2 diabetic patients: an instrumental variable analysis. Sci. Rep. 6:37177, 2016.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Cheng, C. P., G. Choi, R. J. Herfkens, and C. A. Taylor. The effect of aging on deformations of the superficial femoral artery resulting from hip and knee flexion: potential clinical implications. J. Vasc. Interv. Radiol. 21:195–202, 2010.PubMedCrossRefGoogle Scholar
  17. 17.
    Cheng, C., N. Wilson, and R. Hallett. In vivo MR angiographic quantification of axial and twisting deformations of the superficial femoral artery resulting from maximum hip and knee flexion. J Vasc Interv Radiol 17:979–987, 2006.PubMedCrossRefGoogle Scholar
  18. 18.
    Cimminiello, C. PAD: epidemiology and pathophysiology. Thromb. Res. 106:V295–V301, 2002.PubMedCrossRefGoogle Scholar
  19. 19.
    Cisse, C., W. Zaki, and T. Ben Zineb. A review of constitutive models and modeling techniques for shape memory alloys. Int. J. Plast. 76:244–284, 2016.CrossRefGoogle Scholar
  20. 20.
    Comstock, R. J., T. E. Buchheit, M. Somerday, and J. A. Wert. Modeling the transformation stress of constrained shape memory alloy single crystals. Acta Mater. 44:3505–3514, 1996.CrossRefGoogle Scholar
  21. 21.
    Conte, M. S., D. F. Bandyk, A. W. Clowes, G. L. Moneta, L. Seely, T. J. Lorenz, H. Namini, A. D. Hamdan, S. P. Roddy, M. Belkin, S. A. Berceli, R. J. DeMasi, R. H. Samson, and S. S. Berman. Results of PREVENT III: a multicenter, randomized trial of edifoligide for the prevention of vein graft failure in lower extremity bypass surgery. J. Vasc. Surg. 43:742–751, 2006.PubMedCrossRefGoogle Scholar
  22. 22.
    Conti, M., M. Marconi, G. Campanile, A. Reali, D. Adami, R. Berchiolli, and F. Auricchio. Patient-specific finite element analysis of popliteal stenting. Meccanica 2016.  https://doi.org/10.1007/s11012-016-0452-9.Google Scholar
  23. 23.
    Cragg, A., G. Lund, J. Rysavy, F. Castaneda, W. Castaneda-Zuniga, and K. Amplatz. Nonsurgical placement of arterial endoprostheses: a new technique using nitinol wire. Radiology 147:261–263, 1983.PubMedCrossRefGoogle Scholar
  24. 24.
    Dake, M. D. M. D. Nitinol stents with polymer-free paclitaxel coating for lesions in the superficial femoral and popliteal arteries above the knee: twelve-month safety and effectiveness results from the Zilver PTX single-arm clinical study. J. Endovasc. Ther. 18:613–623, 2011.PubMedCrossRefGoogle Scholar
  25. 25.
    Dake, M. D., G. M. Ansel, M. R. Jaff, T. Ohki, R. R. Saxon, H. B. Smouse, T. Zeller, G. S. Roubin, M. W. Burket, Y. Khatib, S. A. Snyder, A. O. Ragheb, J. K. White, and L. S. Machan. Paclitaxel-eluting stents show superiority to balloon angioplasty and bare metal stents in femoropopliteal disease: twelve-month zilver PTX randomized study results. Circ. Cardiovasc. Interv. 4:495–504, 2011.PubMedCrossRefGoogle Scholar
  26. 26.
    Darling, J. D. J. D. Results for primary bypass versus primary angioplasty/stent for lower extremity chronic limb-threatening ischemia. J. Vasc. Surg. 66:466–475, 2017.PubMedCrossRefGoogle Scholar
  27. 27.
    Deas, D. S. J., A. P. Marshall, A. Bian, A. Shintani, and R. J. Guzman. Association of cardiovascular and biochemical risk factors with tibial artery calcification. Vasc. Med. 20:326–331, 2015.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Desyatova, A., J. MacTaggart, and A. Kamenskiy. Constitutive modeling of human femoropopliteal artery biaxial stiffening due to aging and diabetes. Acta Biomater. 64:50–58, 2017.PubMedCrossRefGoogle Scholar
  29. 29.
    Desyatova, A., J. MacTaggart, R. Romarowski, W. Poulson, M. Conti, and A. Kamenskiy. Effect of aging on mechanical stresses, deformations, and hemodynamics in human femoropopliteal artery due to limb flexion. Biomech. Model. Mechanobiol. 2017.  https://doi.org/10.1007/s10237-017-0953-z.Google Scholar
  30. 30.
    Desyatova, A., W. Poulson, P. Deegan, C. Lomneth, A. Seas, K. Maleckis, J. MacTaggart, and A. Kamenskiy. Limb flexion-induced twist and associated intramural stresses in the human femoropopliteal artery. J. R. Soc. Interface 14:20170025, 2017.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Dotter, C., R. Buschmann, K. Montgomery, and J. McKinney. Transluminal expandable nitinol coil stent grafting: preliminary report. Radiology 147:259–260, 1983.PubMedCrossRefGoogle Scholar
  32. 32.
    Drexel, M. J., G. S. Selvaduray, and A. R. Pelton. The effects of cold work and heat treatment on the properties of nitinol wire. Proc. Int. Conf. Shape Mem. Superelastic Technol., 2006.Google Scholar
  33. 33.
    Duda, S. H., J. Wiskirchen, G. Tepe, M. Bitzer, T. W. Kaulich, D. Stoeckel, and C. D. Claussen. Physical properties of endovascular stents: an experimental comparison. J. Vasc. Interv. Radiol. 11:645–654, 2000.PubMedCrossRefGoogle Scholar
  34. 34.
    Duerig, T. W., and K. Bhattacharya. The influence of the R-phase on the superelastic behavior of NiTi. Shape Mem. Superelasticity 1:153–161, 2015.CrossRefGoogle Scholar
  35. 35.
    Duerig, T., A. Pelton, and D. Stöckel. An overview of nitinol medical applications. Mater. Sci. Eng. A 273:149–160, 1999.CrossRefGoogle Scholar
  36. 36.
    Duerig, T. W., D. E. Tolomeo, and M. Wholey. An overview of superelastic stent design. Minim. Invasive Ther. Allied Technol. 9:235–246, 2000.PubMedCrossRefGoogle Scholar
  37. 37.
    Dyet, J. F., W. G. Watts, D. F. Ettles, and A. A. Nicholson. Mechanical properties of metallic stents: how do these properties influence the choice of stent for specific lesions. Cardiovasc. Interv. Radiol. 23:47–54, 2000.CrossRefGoogle Scholar
  38. 38.
    Elahinia, M. H., M. Hashemi, M. Tabesh, and S. B. Bhaduri. Manufacturing and processing of NiTi implants: a review. Prog. Mater. Sci. 57:911–946, 2012.CrossRefGoogle Scholar
  39. 39.
    Favier, D., Y. Liu, L. Orgéas, A. Sandel, L. Debove, and P. Comte-Gaz. Influence of thermomechanical processing on the superelastic properties of a Ni-rich Nitinol shape memory alloy. Mater. Sci. Eng. A 429:130–136, 2006.CrossRefGoogle Scholar
  40. 40.
    FDA. Non-clinical engineering tests and recommended labeling for intravascular stents and associated delivery systems, 2010.Google Scholar
  41. 41.
    Frick, C. P., A. M. Ortega, J. Tyber, A. E. M. Maksound, H. J. Maier, Y. Liu, and K. Gall. Thermal processing of polycrystalline NiTi shape memory alloys. Mater. Sci. Eng. A 405:34–49, 2005.CrossRefGoogle Scholar
  42. 42.
    Gabrielli, R., M. S. Rosati, R. Chiappa, M. Millarelli, L. Marcuccio, A. Siani, and G. Caselli. First clinical experience with the innova versus the protege everflex self-expanding bare metal stents in superficial femoral artery occlusions. Thorac. Cardiovasc. Surg. 63:158–163, 2015.PubMedCrossRefGoogle Scholar
  43. 43.
    Ganguly, A., J. Simons, A. Schneider, B. Keck, N. R. Bennett, R. J. Herfkens, S. M. Coogan, and R. Fahrig. In-vivo imaging of femoral artery nitinol stents for deformation analysis. J. Vasc. Interv. Radiol. 22:244–249, 2011.PubMedCrossRefGoogle Scholar
  44. 44.
    Garcia, L., M. R. Jaff, C. Metzger, G. Sedillo, A. Pershad, F. Zidar, R. Patlola, R. G. Wilkins, A. Espinoza, A. Iskander, G. S. Khammar, Y. Khatib, R. Beasley, S. Makam, R. Kovach, S. Kamat, L. R. J. Leon, W. B. Eaves, J. J. Popma, L. Mauri, D. Donohoe, C. C. Base, and K. Rosenfield. Wire-interwoven nitinol stent outcome in the superficial femoral and proximal popliteal arteries: twelve-month results of the SUPERB trial. Circ. Cardiovasc. Interv. 8:1–8, 2015.CrossRefGoogle Scholar
  45. 45.
    Glagov, S., E. Weisenberg, C. K. Zarins, R. Stankunavicius, and G. J. Kolettis. Compensatory enlargement of human atherosclerotic coronary arteries. N. Engl. J. Med. 316:1371–1375, 1987.PubMedCrossRefGoogle Scholar
  46. 46.
    Gökgöl, C., S. Schumann, N. Diehm, G. Zheng, and P. Büchler. In vivo quantification of the deformations of the femoropopliteal segment. J. Endovasc. Ther. 24:27–34, 2017.PubMedCrossRefGoogle Scholar
  47. 47.
    Gong, X., A. Pelton, and T. Duerig. Finite element analysis and experimental evaluation of superelastic Nitinol stent. Proc. International Conference on Shape Memory and Superelastic Superelastic, 2004.Google Scholar
  48. 48.
    Goodney, P. P., A. W. Beck, J. Nagle, H. G. Welch, and R. M. Zwolak. National trends in lower extremity bypass surgery, endovascular interventions, and major amputations. J. Vasc. Surg. 50:54–60, 2009.PubMedCrossRefGoogle Scholar
  49. 49.
    Gray, W. A., A. Feiring, M. Cioppi, R. Hibbard, B. Gray, Y. Khatib, D. Jessup, W. Bachinsky, E. Rivera, J. Tauth, R. Patarca, J. Massaro, H.-P. Stoll, and M. R. Jaff. S.M.A.R.T. Self-expanding nitinol stent for the treatment of atherosclerotic lesions in the superficial femoral artery (STROLL): 1-year outcomes. J. Vasc. Interv. Radiol. 26:21–28, 2015.PubMedCrossRefGoogle Scholar
  50. 50.
    Guzman, R. J. Clinical, cellular, and molecular aspects of arterial calcification. J. Vasc. Surg. 45:57–63, 2007.CrossRefGoogle Scholar
  51. 51.
    Ho, C. Y., and C. M. Shanahan. Medial arterial calcification: an overlooked player in peripheral arterial disease. Arterioscler. Thromb. Vasc. Biol. 36:1475–1482, 2016.PubMedCrossRefGoogle Scholar
  52. 52.
    Humphrey, J. D. Vascular adaptation and mechanical homeostasis at tissue, cellular, and sub-cellular levels. Cell Biochem. Biophys. 50:53–78, 2008.PubMedCrossRefGoogle Scholar
  53. 53.
    Humphrey, J. D., J. F. Eberth, W. W. Dye, and R. L. Gleason. Fundamental role of axial stress in compensatory adaptations by arteries. J. Biomech. 42:1–8, 2009.PubMedCrossRefGoogle Scholar
  54. 54.
    Irwin, C. L., and R. J. Guzman. Matrix metalloproteinases in medial arterial calcification: potential mechanisms and actions. Vascular 17(Suppl 1):S40–S44, 2009.PubMedCrossRefGoogle Scholar
  55. 55.
    Kamenskiy, A. V., I. I. Pipinos, Y. A. Dzenis, C. S. Lomneth, S. A. J. Kazmi, N. Y. Phillips, and J. N. MacTaggart. Passive biaxial mechanical properties and in vivo axial pre-stretch of the diseased human femoropopliteal and tibial arteries. Acta Biomater. 10:1301–1313, 2014.PubMedCrossRefGoogle Scholar
  56. 56.
    Kamenskiy, A. V., I. I. Pipinos, Y. A. Dzenis, N. Y. Phillips, A. S. Desyatova, J. Kitson, R. Bowen, and J. N. MacTaggart. Effects of age on the physiological and mechanical characteristics of human femoropopliteal arteries. Acta Biomater. 11:304–313, 2015.PubMedCrossRefGoogle Scholar
  57. 57.
    Kamenskiy, A., W. Poulson, S. Sim, A. Reilly, J. Luo, and J. MacTaggart. Prevalence of calcification in human femoropopliteal arteries and its association with demographics, risk factors, and arterial stiffness. Atheroscler. Thromb. Vasc. Biol. 2018.  https://doi.org/10.1161/ATVBAHA.117.310490.Google Scholar
  58. 58.
    Kamenskiy, A., A. Seas, G. Bowen, P. Deegan, A. Desyatova, N. Bohlim, W. Poulson, and J. Mactaggart. In situ longitudinal pre-stretch in the human femoropopliteal artery. Acta Biomater. 32:231–237, 2016.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Kamenskiy, A., A. Seas, P. Deegan, W. Poulson, E. Anttila, S. Sim, A. Desyatova, and J. MacTaggart. Constitutive description of human femoropopliteal artery aging. Biomech. Model. Mechanobiol. 16:681–692, 2017.PubMedCrossRefGoogle Scholar
  60. 60.
    Kauffman, G. B., and I. Mayo. The story of nitinol: the serendipitous discovery of the memory metal and its applications. Chem. Educ. 2(2):1–21, 1997.CrossRefGoogle Scholar
  61. 61.
    Kleinstreuer, C., Z. Li, C. A. Basciano, S. Seelecke, and M. A. Farber. Computational mechanics of Nitinol stent grafts. J. Biomech. 41:2370–2378, 2008.PubMedCrossRefGoogle Scholar
  62. 62.
    Kneissl, A. C., E. Unterweger, M. Bruncko, G. Lojen, K. Mehrabi, and H. Scherngell. Microstructure and properties of NiTi and CuAlNi shape memory alloys. Metalurgija 14:89–100, 2008.Google Scholar
  63. 63.
    Krankenberg, H., M. Schlüter, H. J. Steinkamp, K. Bürgelin, D. Scheinert, K. L. Schulte, E. Minar, P. Peeters, M. Bosiers, G. Tepe, B. Reimers, F. Mahler, T. Tübler, and T. Zeller. Nitinol stent implantation versus percutaneous transluminal angioplasty in superficial femoral artery lesions up to 10 cm in length: the Femoral Artery Stenting Trial (FAST). Circulation 116:285–292, 2007.PubMedCrossRefGoogle Scholar
  64. 64.
    Kurayev, A., S. Zavlunova, and A. Babaev. CRT-207 role of nitinol stent fractures in the development of in-stent restenosis in the superficial femoral artery. JACC Cardiovasc. Interv. 7:S35, 2014.CrossRefGoogle Scholar
  65. 65.
    Laird, J. R., A. Jain, T. Zeller, R. Feldman, D. Scheinert, J. J. Popma, E. J. Armstrong, and M. R. Jaff. Nitinol stent implantation in the superficial femoral artery and proximal popliteal artery: twelve-month results from the complete SE multicenter trial. J. Endovasc. Ther. 21:202–212, 2014.PubMedCrossRefGoogle Scholar
  66. 66.
    Laird, J. R., B. T. Katzen, D. Scheinert, J. Lammer, J. Carpenter, M. Buchbinder, R. Dave, G. Ansel, A. Lansky, E. Cristea, T. J. Collins, J. Goldstein, A. Y. Cao, and M. R. Jaff. Nitinol stent implantation vs. balloon angioplasty for lesions in the superficial femoral and proximal popliteal arteries of patients with claudication: three-year follow-up from the RESILIENT randomized trial. J. Endovasc. Ther. 19:1–9, 2012.PubMedCrossRefGoogle Scholar
  67. 67.
    Laird, J. R., and K. K. Yeo. The treatment of femoropopliteal in-stent restenosis back to the future. J. Am. Coll. Cardiol. 2012.  https://doi.org/10.1016/j.jacc.2011.09.037.PubMedGoogle Scholar
  68. 68.
    Lammer, J., T. Zeller, K. A. Hausegger, P. J. Schaefer, M. Gschwendtner, S. Mueller-Huelsbeck, T. Rand, M. Funovics, F. Wolf, A. Rastan, M. Gschwandtner, S. Puchner, R. Ristl, and M. Schoder. Heparin-bonded covered stents versus bare-metal stents for complex femoropopliteal artery lesions: the randomized VIASTAR trial (viabahn endoprosthesis with propaten bioactive surface [VIA] versus bare nitinol stent in the treatment of long lesions in sup. J. Am. Coll. Cardiol. 62:1320–1327, 2013.PubMedCrossRefGoogle Scholar
  69. 69.
    Lehto, S., L. Niskanen, M. Suhonen, T. Rönnemaa, and M. Laakso. Medial artery calcification. A neglected harbinger of cardiovascular complications in non-insulin-dependent diabetes mellitus. Arterioscler. Thromb. Vasc. Biol. 16:978–983, 1996.PubMedCrossRefGoogle Scholar
  70. 70.
    Levy, P. J. Epidemiology and pathophysiology of peripheral arterial disease. Clin. Cornerstone 4:1–13, 2002.PubMedCrossRefGoogle Scholar
  71. 71.
    Liistro, F., S. Grotti, I. Porto, P. Angioli, L. Ricci, K. Ducci, G. Falsini, G. Ventoruzzo, F. Turini, G. Bellandi, and L. Bolognese. Drug-eluting balloon in peripheral intervention for the superficial femoral artery: the DEBATE-SFA randomized trial (Drug Eluting Balloon in Peripheral Intervention for the Superficial Femoral Artery). JACC Cardiovasc. Interv. 6:1295–1302, 2013.PubMedCrossRefGoogle Scholar
  72. 72.
    Liu, X., Y. Wang, D. Yang, and M. Qi. The effect of ageing treatment on shape-setting and superelasticity of a nitinol stent. Mater. Charact. 59:402–406, 2008.CrossRefGoogle Scholar
  73. 73.
    MacTaggart, J. J. N., N. N. Y. Phillips, C. C. S. Lomneth, I. I. I. Pipinos, R. Bowen, B. Timothy Baxter, J. Johanning, G. Matthew Longo, A. A. S. Desyatova, M. M. J. Moulton, Y. A. Y. Dzenis, A. A. V. Kamenskiy, B. Baxter, J. Johanning, G. Longo, A. A. S. Desyatova, M. M. J. Moulton, Y. A. Y. Dzenis, and A. A. V. Kamenskiy. Three-dimensional bending, torsion and axial compression of the femoropopliteal artery during limb flexion. J. Biomech. 47:2249–2256, 2014.PubMedCrossRefGoogle Scholar
  74. 74.
    MacTaggart, J., W. Poulson, A. Seas, P. Deegan, C. Lomneth, A. Desyatova, K. Maleckis, and A. Kamenskiy. Stent design affects femoropopliteal artery deformation, 2018.Google Scholar
  75. 75.
    Mahoney, E. M., K. Wang, H. H. Keo, S. Duval, K. G. Smolderen, D. J. Cohen, G. Steg, D. L. Bhatt, and A. T. Hirsch. Vascular hospitalization rates and costs in patients with peripheral artery disease in the United States. Circ. Cardiovasc. Qual. Outcomes 3:642–651, 2010.PubMedCrossRefGoogle Scholar
  76. 76.
    Mahtabi, M. J., and N. Shamsaei. Multiaxial fatigue modeling for Nitinol shape memory alloys under in-phase loading. J. Mech. Behav. Biomed. Mater. 55:236–249, 2016.CrossRefGoogle Scholar
  77. 77.
    Mahtabi, M. J., N. Shamsaei, and M. R. Mitchell. Fatigue of Nitinol: the state-of-the-art and ongoing challenges. J. Mech. Behav. Biomed. Mater. 50:228–254, 2015.PubMedCrossRefGoogle Scholar
  78. 78.
    Maleckis, K., P. Deegan, W. Poulson, C. Sievers, A. Desyatova, J. MacTaggart, and A. Kamenskiy. Comparison of femoropopliteal artery stents under axial and radial compression, axial tension, bending, and torsion deformations. J. Mech. Behav. Biomed. Mater. 75:160–168, 2017.PubMedCrossRefGoogle Scholar
  79. 79.
    Matsumura, J. S., D. Yamanouchi, J. A. Goldstein, C. W. Pollock, M. Bosiers, G. A. Schultz, D. Scheinert, and K. J. Rocha-Singh. The United States StuDy for EvalUating EndovasculaR TreAtments of Lesions in the Superficial Femoral Artery and Proximal Popliteal By usIng the Protégé EverfLex NitInol STent SYstem II (DURABILITY II). J. Vasc. Surg. 58:73–83.e1, 2013.PubMedCrossRefGoogle Scholar
  80. 80.
    Mohr, P. J. P. J. Clinical outcomes of endovascular treatment of TASC-II C and D femoropopliteal lesions with the Viabahn endoprosthesis. Cardiovasc. Revascularization Med. 16:465–468, 2015.CrossRefGoogle Scholar
  81. 81.
    Montero-Baker, M. M. Analysis of endovascular therapy for femoropopliteal disease with the Supera stent. J. Vasc. Surg. 64:1002–1008, 2016.PubMedCrossRefGoogle Scholar
  82. 82.
    Müller-Hülsbeck, S., P. J. Schäfer, N. Charalambous, H. Yagi, M. Heller, and T. Jahnke. Comparison of second-generation stents for application in the superficial femoral artery: an in vitro evaluation focusing on stent design. J. Endovasc. Ther. 17:767–776, 2010.PubMedCrossRefGoogle Scholar
  83. 83.
    Mwipatayi, B. P., A. Hockings, M. Hofmann, M. Garbowski, and K. Sieunarine. Balloon angioplasty compared with stenting for treatment of femoropopliteal occlusive disease: a meta-analysis. J. Vasc. Surg. 47:461–469, 2008.PubMedCrossRefGoogle Scholar
  84. 84.
    Nagl, F., G. Siekmeyer, M. Quellmalz, and A. Schuessler. A comparison of different nitinol material data sources for finite element analysis. J. Mater. Eng. Perform. 20:737–744, 2011.CrossRefGoogle Scholar
  85. 85.
    Nakazawa, G., A. V. Finn, M. Vorpahl, E. Ladich, R. Kutys, I. Balazs, F. D. Kolodgie, and R. Virmani. Incidence and predictors of drug-eluting stent fracture in human coronary artery. A pathologic analysis. J. Am. Coll. Cardiol. 54:1924–1931, 2009.PubMedCrossRefGoogle Scholar
  86. 86.
    Nasser, F., A. Kambara, C. Abath, D. Cavalcanti, I. Barros, N. Pires, M. Rivera, A. Neser, J. Ingrund, M. Burihan, P. Silveira, G. Galego, C. Bortoluzzi, R. Franklin, M. Bosiers, K. Deloose, A. Razuk, R. Caffaro, W. K. Karakhanian, J. Park, C. Lopes, D. Pinto, L. Bez, R. Lopes, A. Mourao, and G. Kleinsorge. Safety and efficacy of the EPIC nitinol vascular stent system for the treatment of lesions located in the superficial femoral artery: prospective and multicentric trial. J. Cardiovasc. Surg. (Torino) 58:409–415, 2015.Google Scholar
  87. 87.
    Nematzadeh, F., and S. K. Sadrnezhaad. Effects of material properties on mechanical performance of Nitinol stent designed for femoral artery: finite element analysis. Sci. Iran 19:1564–1571, 2012.CrossRefGoogle Scholar
  88. 88.
    Ng, K. L., and Q. P. Sun. Stress-induced phase transformation and detwinning in NiTi polycrystalline shape memory alloy tubes. Mech. Mater. 38:41–56, 2006.CrossRefGoogle Scholar
  89. 89.
    Ni Ghriallais, R., K. Heraty, B. Smouse, M. Burke, P. Gilson, and M. Bruzzi. Deformation of the femoropopliteal segment: effect of stent length, location, flexibility, and curvature. J. Endovasc. Ther. 23:907–918, 2016.PubMedCrossRefGoogle Scholar
  90. 90.
    Nikanorov, A., M. Schillinger, H. Zhao, E. Minar, and L. B. Schwartz. Assessment of self-expanding nitinol stent deformation after chronic implantation into the femoropopliteal arteries. EuroIntervention 9:730–737, 2013.PubMedCrossRefGoogle Scholar
  91. 91.
    Nikanorov, A., H. B. Smouse, K. Osman, M. Bialas, S. Shrivastava, and L. B. Schwartz. Fracture of self-expanding nitinol stents stressed in vitro under simulated intravascular conditions. J. Vasc. Surg. 48:435–440, 2008.PubMedCrossRefGoogle Scholar
  92. 92.
    Nishida, M., C. M. Wayman, and T. Honma. Precipitation processes in near-equiatomic TiNi shape memory alloys. Metall. Trans. A 17:1505–1515, 1986.CrossRefGoogle Scholar
  93. 93.
    Ohki, T., J. F. Angle, H. Yokoi, M. R. Jaff, J. Popma, G. Piegari, and Y. Kanaoka. One-year outcomes of the U.S. and Japanese regulatory trial of the Misago stent for treatment of superficial femoral artery disease (OSPREY study). J. Vasc. Surg. 63:370–376, 2016.PubMedCrossRefGoogle Scholar
  94. 94.
    Otsuka, K., and X. Ren. Physical metallurgy of Ti–Ni-based shape memory alloys. Prog. Mater. Sci. 50:511–678, 2005.CrossRefGoogle Scholar
  95. 95.
    Patoor, E., A. Eberhardt, and M. Berveiller. Micromechanical modelling of superelasticity in shape memory alloys. Shape Mem. Alloy. J. Phys. IV Colloq. 1996.  https://doi.org/10.1051/jp4:1996127.Google Scholar
  96. 96.
    Pelton, A. R. Fatigue and durability of nitinol stents. J. Mech. Behav. Biomed. Mater. 1:153–164, 2007.PubMedCrossRefGoogle Scholar
  97. 97.
    Pelton, A., N. Rebelo, T. Duerig, and A. Wick. Experimental and FEM analysis of the bending behaviour of superelastic tubing experimental and FEM analysis of the bending behavior of super elastic tubing. Proc. First Int. Conf. Shape Mem. Superelastic Technol., pp. 353–358, 1994.Google Scholar
  98. 98.
    Petrini, L., A. Trotta, E. Dordoni, F. Migliavacca, G. Dubini, P. V. Lawford, J. N. Gosai, D. M. Ryan, D. Testi, and G. Pennati. A computational approach for the prediction of fatigue behaviour in peripheral stents: application to a clinical case. Ann. Biomed. Eng. 44:536–547, 2016.PubMedCrossRefGoogle Scholar
  99. 99.
    Poulson, W., A. Kamenskiy, A. Seas, P. Deegan, C. Lomneth, and J. MacTaggart. Limb flexion-induced axial compression and bending in human femoropopliteal artery segments. J. Vasc. Surg. 2017.  https://doi.org/10.1016/j.jvs.2017.01.071.PubMedGoogle Scholar
  100. 100.
    Powell, R. J. R. J. Stent placement in the superficial femoral and proximal popliteal arteries with the innova self-expanding bare metal stent system. Catheter. Cardiovasc. Interv. 89:1069–1077, 2017.PubMedCrossRefGoogle Scholar
  101. 101.
    Price, P. A., S. A. Faus, and M. K. Williamson. Warfarin-induced artery calcification is accelerated by growth and vitamin D. Arterioscler. Thromb. Vasc. Biol. 20:317–327, 2000.PubMedCrossRefGoogle Scholar
  102. 102.
    Qi, Y., H. Qi, Y. He, W. Lin, P. Li, L. Qin, Y. Hu, L. Chen, Q. Liu, H. Sun, Q. Liu, G. Zhang, S. Cui, J. Hu, L. Yu, D. Zhang, and J. Ding. Strategy of metal–polymer composite stent to accelerate biodegradation of iron-based biomaterials. ACS Appl. Mater. Interfaces 2017.  https://doi.org/10.1021/acsami.7b15206.Google Scholar
  103. 103.
    Qin, X., M. A. Corriere, L. M. Matrisian, and R. J. Guzman. Matrix metalloproteinase inhibition attenuates aortic calcification. Arterioscler. Thromb. Vasc. Biol. 26:1510–1516, 2006.PubMedCrossRefGoogle Scholar
  104. 104.
    Rebelo, N., N. Walker, and H. Foadian. Simulation of implantable nitinol stents, 2001.Google Scholar
  105. 105.
    Robertson, S. W., X. Y. Gong, and R. O. Ritchie. Effect of product form and heat treatment on the crystallographic texture of austenitic Nitinol. J. Mater. Sci. 41:621–630, 2006.CrossRefGoogle Scholar
  106. 106.
    Robertson, S. W., A. R. Pelton, and R. O. Ritchie. Mechanical fatigue and fracture of Nitinol. Int. Mater. Rev. 57:1–37, 2012.CrossRefGoogle Scholar
  107. 107.
    Robertson, S. W., R. O. Ritchie, A. Mehta, X. Y. Gong, and A. R. Pelton. Ultrahigh-resolution in situ diffraction characterization of the local mechanics at a growing crack tip in Nitinol. SMST-2006 Proc. Int. Conf. Shape Mem. Superelastic Technol., 2008.Google Scholar
  108. 108.
    Rocha-Singh, K. J., T. Zeller, and M. R. Jaff. Peripheral arterial calcification: prevalence, mechanism, detection, and clinical implications. Catheter. Cardiovasc. Interv. 83:212–220, 2014.CrossRefGoogle Scholar
  109. 109.
    Rundback, J. H., K. C. Herman, and A. Patel. Superficial femoral artery intervention: creating an algorithmic approach for the use of old and novel (endovascular) technologies. Curr. Treat. Options Cardiovasc. Med. 17:400, 2015.PubMedCrossRefGoogle Scholar
  110. 110.
    Ryhänen, J., and J. Ryhanen. Minimally invasive therapy & allied technologies biocompatibility of nitinol biocompatibility of Nitinol. Minim. Invasive Ther. Allied Technol. 9:99–105, 2000.CrossRefGoogle Scholar
  111. 111.
    Scheinert, D., S. Scheinert, J. Sax, C. Piorkowski, S. Bräunlich, M. Ulrich, G. Biamino, and A. Schmidt. Prevalence and clinical impact of stent fractures after femoropopliteal stenting. J. Am. Coll. Cardiol. 45:312–315, 2005.PubMedCrossRefGoogle Scholar
  112. 112.
    Schillinger, M., and E. Minar. Past, present and future of femoropopliteal stenting. J. Endovasc. Ther. 16:147–152, 2009.CrossRefGoogle Scholar
  113. 113.
    Schillinger, M., S. Sabeti, P. Dick, J. Amighi, W. Mlekusch, O. Schlager, C. Loewe, M. Cejna, J. Lammer, and E. Minar. Sustained benefit at 2 years of primary femoropopliteal stenting compared with balloon angioplasty with optional stenting. Circulation 115:2745–2749, 2007.PubMedCrossRefGoogle Scholar
  114. 114.
    Schillinger, M., S. Sabeti, and C. Loewe. Balloon angioplasty versus implantation of nitinol stents in the superficial femoral artery. N. Engl. J. Med. 354:1879–1888, 2006.PubMedCrossRefGoogle Scholar
  115. 115.
    Schlager, O., P. Dick, S. Sabeti, J. Amighi, W. Mlekusch, E. Minar, and M. Schillinger. Long-segment SFA stenting-the dark sides: in-stent restenosis, clinical deterioration, and stent fractures. J. Endovasc. Ther. 12:676–684, 2005.PubMedCrossRefGoogle Scholar
  116. 116.
    Sharma, U., D. Concagh, L. Core, Y. Kuang, C. You, Q. Pham, G. Zugates, R. Busold, S. Webber, J. Merlo, R. Langer, G. M. Whitesides, and M. Palasis. The development of bioresorbable composite polymeric implants with high mechanical strength. Nat. Mater. 17:96, 2017.PubMedCrossRefGoogle Scholar
  117. 117.
    Sibé, M., A. Kaladji, C. Boirat, A. Cardon, X. Chaufour, J. P. Bossavy, and B. Saint-Lebes. French multicenter experience with the GORE TIGRIS vascular stent in superficial femoral and popliteal arteries. J. Vasc. Surg. 65:1329–1335, 2017.PubMedCrossRefGoogle Scholar
  118. 118.
    Sitepu, H. Use of synchrotron diffraction data for describing crystal structure and crystallographic phase analysis of R-phase NiTi shape memory alloy. Textures Microstruct. 35:185–195, 2003.CrossRefGoogle Scholar
  119. 119.
    Smouse, B. H. B., A. Nikanorov, and D. Laflash. Biomechanical forces in the femoropopliteal arterial segment. Endovasc. Today 4:60–66, 2005.Google Scholar
  120. 120.
    Stankiewicz, J. M., S. W. Robertson, and R. O. Ritchie. Fatigue-crack growth properties of thin-walled superelastic austenitic Nitinol tube for endovascular stents. J. Biomed. Mater. Res. A 81:685–691, 2007.PubMedCrossRefGoogle Scholar
  121. 121.
    Stoeckel, D., A. Pelton, and T. Duerig. Self-expanding nitinol stents: material and design considerations. Eur. Radiol. 14:292–301, 2004.PubMedCrossRefGoogle Scholar
  122. 122.
    Stone, P. A. P. A. Early results with LifeStent implantation in RESILIENT and non-RESILIENT inclusion criteria patients. Vascular 23:225–233, 2015.PubMedCrossRefGoogle Scholar
  123. 123.
    Sullivan, S. J. L., M. L. Dreher, J. Zheng, L. Chen, D. Madamba, K. Miyashiro, C. Trépanier, and S. Nagaraja. Effects of oxide layer composition and radial compression on nickel release in Nitinol stents. Shape Mem. Superelasticity 1:319–327, 2015.CrossRefGoogle Scholar
  124. 124.
    Sun, Q. P., and K. C. Hwang. Micromechanics modelling for the constitutive behavior of polycrystalline shape memory alloys—I. Derivation of general relations. J. Mech. Phys. Solids 41:1–17, 1993.CrossRefGoogle Scholar
  125. 125.
    Thériault, P., P. Terriault, V. Brailovski, and R. Gallo. Finite element modeling of a progressively expanding shape memory stent. J. Biomech. 39:2837–2844, 2006.PubMedCrossRefGoogle Scholar
  126. 126.
    Timmins, L. H., M. W. Miller, F. J. Clubb, and J. E. Moore. Increased artery wall stress post-stenting leads to greater intimal thickening. Lab. Investig. 91:955–967, 2011.PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Virmani, R., and A. Farb. Pathology of in-stent restenosis. Curr. Opin. Lipidol. 10:499–506, 1999.PubMedCrossRefGoogle Scholar
  128. 128.
    W. L. Gore & Associates. I. Mechanical properties of nitinol stents and stent-grafts: comparison of 6 mm diameter devices, 2007.Google Scholar
  129. 129.
    Watt, J. Origin of femoro-popliteal occlusions. Br. Med. J. 2:1455–1459, 1965.PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Werner, M. M. SUMMIT registry: one-year outcomes after implantation of the EPIC self-expanding nitinol stent in the femoropopliteal segment. J. Endovasc. Ther. 20:759–766, 2013.PubMedCrossRefGoogle Scholar
  131. 131.
    Werner, M. Factors affecting reduction in SFA stent fracture rates. Endovasc. Today 13:93–95, 2014.Google Scholar
  132. 132.
    Werner, M., A. Micari, A. Cioppa, G. Vadalà, A. Schmidt, H. Sievert, P. Rubino, A. Angelini, D. Scheinert, and G. Biamino. Evaluation of the biodegradable peripheral Igaki-Tamai stent in the treatment of de novo lesions in the superficial femoral artery: the GAIA study. JACC Cardiovasc. Interv. 7:305–312, 2014.PubMedCrossRefGoogle Scholar
  133. 133.
    Whitcher, F. D. Simulation of in vivo loading conditions of nitinol vascular stent structures. Comput. Struct. 64:1005–1011, 1997.CrossRefGoogle Scholar
  134. 134.
    Yeung, K. W. K., K. M. C. Cheung, W. W. Lu, and C. Y. Chung. Optimization of thermal treatment parameters to alter austenitic phase transition temperature of NiTi alloy for medical implant. Mater. Sci. Eng. A 383:213–218, 2004.CrossRefGoogle Scholar
  135. 135.
    Zeller, T., N. Saratzis, D. Scheinert, E. Minar, J. P. Beregi, M. Schillinger, H. A. Hausegger, M. Amor, P. Quaretti, R. Moratto, C. Dorange, E. Boone, and H. Krankenberg. Non-randomized, prospective, multi-centre evaluation of the ABSOLUTE .035 peripheral self-expanding stent system for occluded or stenotic superficial femoral or proximal popliteal arteries (ASSESS Trial): acute and 30-day results. J. Cardiovasc. Surg. (Torino) 48:719–726, 2007.Google Scholar

Copyright information

© Biomedical Engineering Society 2018

Authors and Affiliations

  1. 1.Department of Surgery, 987690 Nebraska Medical CenterUniversity of Nebraska Medical CenterOmahaUSA

Personalised recommendations