Abstract
Rotational atherectomy (RA) uses a high-speed rotating burr introduced via a catheter through the artery to remove hardened atherosclerotic plaque. Current clinical RA technique lacks consensus on burr size and rotational speed. The rotating burr orbits inside the artery due to the fluid force of the blood. Different from a common RA technique of upsizing burrs for larger luminal gain, a small burr can orbit to treat a large lumen. A 3D computational fluid dynamics (CFD) model was developed to simulate the burr motion and study the fluid flow and force in RA. A particle image velocimetry experiment was conducted to measure and validate the flow field including the radial and axial velocities and a pair of counter-rotating vortices near the burr equator in CFD. The hydraulic force on the burr and the contact force between the burr and the arterial wall were estimated by CFD. The contact force can be reduced by using smaller burr and lower rotational speed. Utilizing the small burr orbital motion has the potential to be an improved RA technique.
This is a preview of subscription content, access via your institution.








References
- 1.
Barbato, E., D. Carrié, P. Dardas, J. Fajadet, G. Gaul, M. Haude, et al. European expert consensus on rotational atherectomy. EuroIntervention. 11(1):30–36, 2015.
- 2.
Boston Scientific. Rotablator System Reference Guide. Natick, MA: Boston Scientific, 2014.
- 3.
Charles, D. F. Refractive indices of sucrose-water solutions in the range from 24 to 53% sucrose. Anal. Chem. 37(3):405–406, 1965.
- 4.
Devidutta, S., and K. K. Yeo. Acute stent thrombosis due to stent underexpansion managed with rotational atherectomy. Cardiovasc. Revasc. Med. 17(1):66–70, 2016.
- 5.
Dodge, Jr, J. T., B. G. Brown, E. L. Bolson, and H. T. Dodge. Lumen diameter of normal human coronary arteries. Influence of age, sex, anatomic variation, and left ventricular hypertrophy or dilation. Circulation. 86(1):232–246, 1992.
- 6.
Escue, A., and J. Cui. Comparison of turbulence models in simulating swirling pipe flows. Appl. Math. Model. 34(10):2840–2849, 2010.
- 7.
Feng, S., Q. Li, and S. Fu. On the orbital motion of a rotating inner cylinder in annular flow. Int. J. Numer Methods 54(2):155–173, 2007.
- 8.
Ha, T. W., and B. S. Choe. Numerical simulation of rotordynamic coefficients for eccentric annular-type-plain-pump seal using CFD analysis. J. Mech. Sci. Technol. 26(4):1043–1048, 2012.
- 9.
Heller, L. I., K. H. Silver, B. J. Villegas, S. J. Balcom, and B. H. Weiner. Blood flow velocity in the right coronary artery: assessment before and after angioplasty. J. Am. Coll. Cardiol. 24(4):1012–1017, 1994.
- 10.
Jinnouchi, H., S. Kuramitsu, T. Shinozaki, Y. Kobayashi, T. Hiromasa, T. Morinaga, et al. Two-year clinical outcomes of newer-generation drug-eluting stent implantation following rotational atherectomy for heavily calcified lesions. Circ. J. 79(9):1938–1943, 2015.
- 11.
Kader, B. Temperature and concentration profiles in fully turbulent boundary layers. Int. J. Heat Mass Transf. 24(9):1541–1544, 1981.
- 12.
Kawata, M., Y. Kato, H. Takada, K. Kamemura, A. Matsuura, and S. Sakamoto. Successful rotational atherectomy for a repetitive restenosis lesion with underexpansion of double layer drug-eluting stents due to heavily calcified plaque. Cardiovasc. Interv. Ther. 31(1):65–69, 2016.
- 13.
Keane, R. D., and R. J. Adrian. Theory of cross-correlation analysis of PIV images. Appl. Sci. Res. 3(49):191–215, 1992.
- 14.
Kolh, P., S. Windecker, F. Alfonso, J. P. Collet, J. Cremer, V. Falk, et al. 2014 ESC/EACTS Guidelines on myocardial revascularization: the Task Force on Myocardial Revascularization of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS). Developed with the special contribution of the European Association of Percutaneous Cardiovascular Interventions (EAPCI). Eur. J. Cardiothorac. Surg. 46(4):517–592, 2014.
- 15.
Kuramitsu, S., T. Hiromasa, H. Jinnouchi, T. Domei, S. Shirai, and K. Ando. Usefulness of rotational atherectomy with optical frequency domain imaging guidance for severe calcified coronary lesions after Kawasaki disease. Cardiovasc. Interv. Ther. 32(2):154–158, 2017.
- 16.
Larsen, J. K., J. T. Ottesen, and M. S. Olufsen. Applied Mathematical Models in Human Physiology. Philadelphia: Society for Industrial and Applied Mathematics, 26 pp., 2004.
- 17.
Larson, R. G., E. S. Shaqfeh, and S. J. Muller. A purely elastic instability in Taylor–Couette flow. J. Fluid Mech. 218:573–600, 1990.
- 18.
Lasala, J. M., and M. Reisman. Rotablator plus stent therapy (rotastent). Curr. Opin. Cardiol. 13(4):240–247, 1998.
- 19.
Levine, G. N., E. R. Bates, J. C. Blankenship, S. R. Bailey, J. A. Bittl, B. Cercek, et al. 2011 ACCF/AHA/SCAI Guideline for percutaneous coronary intervention: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines and the Society for Cardiovascular Angiography and Interventions. Circulation. 124(23):e574–e651, 2011.
- 20.
Liu, Y., B. Li, C. Wu, and L. Kong. Experimental investigation and modeling of catheter temperature in atherectomy. J. Med. Biol. Eng. 2017. https://doi.org/10.1007/s40846-017-0301-x.
- 21.
Liu, Y., B. Li, Y. Zheng, and A. J. Shih. Experiment and smooth particle hydrodynamics simulation of debris size in grinding of calcified plaque in atherectomy. CIRP Ann. 66(1):325–328, 2017.
- 22.
Maejima, N., K. Hibi, K. Saka, E. Akiyama, M. Konishi, M. Endo, et al. Relationship between thickness of calcium on optical coherence tomography and crack formation after balloon dilatation in calcified plaque requiring rotational atherectomy. Circ. J. 80(6):1413–1419, 2016.
- 23.
Merrill, E. W., and G. A. Pelletier. Viscosity of human blood: transition from Newtonian to non-Newtonian. J. Appl. Physiol. 23(2):178–182, 1967.
- 24.
Moore, J. J., and A. B. Palazzolo. Rotordynamic force prediction of whirling centrifugal impeller shroud passages using computational fluid dynamic techniques. J. Eng. Gas Turbines Power. 123(4):910–918, 1999.
- 25.
Moore, J. J., D. L. Ransom, and F. Viana. Rotordynamic force prediction of centrifugal compressor impellers using computational fluid dynamic techniques. J. Eng. Gas Turbines Power. 133(4):042504, 2010.
- 26.
Moscucci, M. Complications of Cardiovascular Procedures: Risk Factors, Management, and Bailout Techniques. Philadelphia: Lippincott Williams & Wilkins, 503 pp., 2011.
- 27.
Mota, P., A. de Belder, and A. Leitão-Marques. Rotational atherectomy: Technical update. Rev. Port Cardiol. 34(4):271–278, 2015.
- 28.
Mukherjee, D., E. Bates, M. Roffi, and D. Moliterno. Cardiovascular Catheterization and Intervention: A Textbook of Coronary, Peripheral, and Structural Heart Disease. Boca Raton: CRC Press, 391 pp., 2010.
- 29.
Safian, R. D., T. Feldman, D. W. Muller, D. Mason, T. Schreiber, B. Haik, et al. Coronary angioplasty and rotablator atherectomy trial (CARAT): immediate and late results of a prospective multicenter randomized trial. Catheter Cardiovasc. Interv. 53:213–220, 2001.
- 30.
Sakakura, K., Y. Taniguchi, M. Matsumoto, H. Wada, S. Momomura, and H. Fujita. How should we perform rotational atherectomy to an angulated calcified lesion? Int. Heart J. 57(3):376–379, 2016.
- 31.
Shih, A., Y. Liu, and Y. Zheng. Grinding wheel motion, force, temperature, and material removal in rotational atherectomy of calcified plaque. CIRP Ann. 65(1):345–348, 2016.
- 32.
Taylor, G. I. Stability of a viscous liquid contained between two rotating cylinders. Philos. Trans. R. Soc. A. 223:289–343, 1923.
- 33.
Thielicke, W., and E. J. Stamhuis. PIVlab–towards user-friendly, affordable and accurate digital particle image velocimetry in MATLAB. J. Open Res. Softw. 2(1):e30, 2014.
- 34.
Tomey, M. I., A. S. Kini, and S. K. Sharma. Current status of rotational atherectomy. J. Am. Coll. Cardiol. Interv. 7(4):345–353, 2014.
- 35.
Tomey, M. I., and S. K. Sharma. Interventional options for coronary artery calcification. Curr. Cardiol. Rep. 18(2):12, 2016.
- 36.
Untaroiu, A., C. D. Untaroiu, H. G. Wood, and P. E. Allaire. Numerical modeling of fluid-induced rotordynamic forces in seals with large aspect ratios. J. Eng. Gas Turbines Power. 135(1):012501, 2012.
- 37.
vom Dahl, J., U. Dietz, P. K. Haager, S. Silber, L. Niccoli, H. J. Buettner, et al. Rotational atherectomy does not reduce recurrent in-stent restenosis: results of the angioplasty versus rotational atherectomy for treatment of diffuse in-stent restenosis trial (ARTIST). Circulation 105(5):583–588, 2002.
- 38.
Wei, Z. H., J. Xie, L. Wang, W. Huang, K. Wang, L. N. Kang, et al. Therapeutic effect of rotational atherectomy with implantation of drug eluting stent in heavily coronary calcified patients. J. Geriatr. Cardiol. 13(3):233–238, 2016.
- 39.
White, M. F. Fluid Mechanics. New York: McGraw-Hill, 736 pp., 1994.
- 40.
Whitlow, P. L., T. A. Bass, R. M. Kipperman, B. L. Sharaf, K. K. Ho, D. E. Cutlip, et al. Results of the study to determine rotablator and transluminal angioplasty strategy (STRATAS). Am. J. Cardiol. 87(6):699–705, 2001.
- 41.
Wolf, Y. G., Z. Kobzantsev, and L. Zelmanovich. Size of normal and aneurysmal popliteal arteries: a duplex ultrasound study. J. Vasc. Surg. 43(3):488–492, 2006.
- 42.
Zhang, B., F. Wang, J. W. Tan, H. Liao, W. Chai, H. Yu, et al. The application of rotational atherectomy in PCI of coronary chronic total occlusions. ASEAN Heart J. 24(1):1–4, 2016.
- 43.
Zheng, Y., B. Belmont, and A. J. Shih. Experimental investigation of the abrasive crown dynamics in orbital atherectomy. Med. Eng. Phys. 38(7):639–647, 2016.
- 44.
Zheng, Y., Y. Liu, Y. Liu, and A. J. Shih. Experimental investigation of the grinding force in rotational atherectomy. Procedia Manuf. 5:838–848, 2016.
- 45.
Zimarino, M., T. Corcos, E. Bramucci, and C. Tamburino. Rotational atherectomy: a “survivor” in the drug-eluting stent era. Cardiovasc. Revasc. Med. 13(3):185–192, 2012.
Acknowledgments
The research is supported by the National Science Foundation (Award CMMI #1232655). We acknowledge Boston Scientific for the support of the rotational atherectomy devices in this study.
Author information
Affiliations
Corresponding author
Additional information
Associate Editor Lakshmi Prasad Dasi oversaw the review of this article.
Rights and permissions
About this article
Cite this article
Zheng, Y., Liu, Y., Pitre, J.J. et al. Computational Fluid Dynamics Modeling of the Burr Orbital Motion in Rotational Atherectomy with Particle Image Velocimetry Validation. Ann Biomed Eng 46, 567–578 (2018). https://doi.org/10.1007/s10439-018-1984-z
Received:
Accepted:
Published:
Issue Date:
Keywords
- Hydraulic force
- Burr-to-artery ratio
- Rotational speed
- Atherosclerosis