Computational Fluid Dynamics Modeling of the Burr Orbital Motion in Rotational Atherectomy with Particle Image Velocimetry Validation

Abstract

Rotational atherectomy (RA) uses a high-speed rotating burr introduced via a catheter through the artery to remove hardened atherosclerotic plaque. Current clinical RA technique lacks consensus on burr size and rotational speed. The rotating burr orbits inside the artery due to the fluid force of the blood. Different from a common RA technique of upsizing burrs for larger luminal gain, a small burr can orbit to treat a large lumen. A 3D computational fluid dynamics (CFD) model was developed to simulate the burr motion and study the fluid flow and force in RA. A particle image velocimetry experiment was conducted to measure and validate the flow field including the radial and axial velocities and a pair of counter-rotating vortices near the burr equator in CFD. The hydraulic force on the burr and the contact force between the burr and the arterial wall were estimated by CFD. The contact force can be reduced by using smaller burr and lower rotational speed. Utilizing the small burr orbital motion has the potential to be an improved RA technique.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

References

  1. 1.

    Barbato, E., D. Carrié, P. Dardas, J. Fajadet, G. Gaul, M. Haude, et al. European expert consensus on rotational atherectomy. EuroIntervention. 11(1):30–36, 2015.

    Article  PubMed  Google Scholar 

  2. 2.

    Boston Scientific. Rotablator System Reference Guide. Natick, MA: Boston Scientific, 2014.

    Google Scholar 

  3. 3.

    Charles, D. F. Refractive indices of sucrose-water solutions in the range from 24 to 53% sucrose. Anal. Chem. 37(3):405–406, 1965.

    CAS  Article  Google Scholar 

  4. 4.

    Devidutta, S., and K. K. Yeo. Acute stent thrombosis due to stent underexpansion managed with rotational atherectomy. Cardiovasc. Revasc. Med. 17(1):66–70, 2016.

    Article  PubMed  Google Scholar 

  5. 5.

    Dodge, Jr, J. T., B. G. Brown, E. L. Bolson, and H. T. Dodge. Lumen diameter of normal human coronary arteries. Influence of age, sex, anatomic variation, and left ventricular hypertrophy or dilation. Circulation. 86(1):232–246, 1992.

    Article  PubMed  Google Scholar 

  6. 6.

    Escue, A., and J. Cui. Comparison of turbulence models in simulating swirling pipe flows. Appl. Math. Model. 34(10):2840–2849, 2010.

    Article  Google Scholar 

  7. 7.

    Feng, S., Q. Li, and S. Fu. On the orbital motion of a rotating inner cylinder in annular flow. Int. J. Numer Methods 54(2):155–173, 2007.

    Article  Google Scholar 

  8. 8.

    Ha, T. W., and B. S. Choe. Numerical simulation of rotordynamic coefficients for eccentric annular-type-plain-pump seal using CFD analysis. J. Mech. Sci. Technol. 26(4):1043–1048, 2012.

    Article  Google Scholar 

  9. 9.

    Heller, L. I., K. H. Silver, B. J. Villegas, S. J. Balcom, and B. H. Weiner. Blood flow velocity in the right coronary artery: assessment before and after angioplasty. J. Am. Coll. Cardiol. 24(4):1012–1017, 1994.

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Jinnouchi, H., S. Kuramitsu, T. Shinozaki, Y. Kobayashi, T. Hiromasa, T. Morinaga, et al. Two-year clinical outcomes of newer-generation drug-eluting stent implantation following rotational atherectomy for heavily calcified lesions. Circ. J. 79(9):1938–1943, 2015.

    Article  PubMed  Google Scholar 

  11. 11.

    Kader, B. Temperature and concentration profiles in fully turbulent boundary layers. Int. J. Heat Mass Transf. 24(9):1541–1544, 1981.

    Article  Google Scholar 

  12. 12.

    Kawata, M., Y. Kato, H. Takada, K. Kamemura, A. Matsuura, and S. Sakamoto. Successful rotational atherectomy for a repetitive restenosis lesion with underexpansion of double layer drug-eluting stents due to heavily calcified plaque. Cardiovasc. Interv. Ther. 31(1):65–69, 2016.

    Article  PubMed  Google Scholar 

  13. 13.

    Keane, R. D., and R. J. Adrian. Theory of cross-correlation analysis of PIV images. Appl. Sci. Res. 3(49):191–215, 1992.

    Article  Google Scholar 

  14. 14.

    Kolh, P., S. Windecker, F. Alfonso, J. P. Collet, J. Cremer, V. Falk, et al. 2014 ESC/EACTS Guidelines on myocardial revascularization: the Task Force on Myocardial Revascularization of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS). Developed with the special contribution of the European Association of Percutaneous Cardiovascular Interventions (EAPCI). Eur. J. Cardiothorac. Surg. 46(4):517–592, 2014.

    Article  PubMed  Google Scholar 

  15. 15.

    Kuramitsu, S., T. Hiromasa, H. Jinnouchi, T. Domei, S. Shirai, and K. Ando. Usefulness of rotational atherectomy with optical frequency domain imaging guidance for severe calcified coronary lesions after Kawasaki disease. Cardiovasc. Interv. Ther. 32(2):154–158, 2017.

    Article  PubMed  Google Scholar 

  16. 16.

    Larsen, J. K., J. T. Ottesen, and M. S. Olufsen. Applied Mathematical Models in Human Physiology. Philadelphia: Society for Industrial and Applied Mathematics, 26 pp., 2004.

    Google Scholar 

  17. 17.

    Larson, R. G., E. S. Shaqfeh, and S. J. Muller. A purely elastic instability in Taylor–Couette flow. J. Fluid Mech. 218:573–600, 1990.

    CAS  Article  Google Scholar 

  18. 18.

    Lasala, J. M., and M. Reisman. Rotablator plus stent therapy (rotastent). Curr. Opin. Cardiol. 13(4):240–247, 1998.

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Levine, G. N., E. R. Bates, J. C. Blankenship, S. R. Bailey, J. A. Bittl, B. Cercek, et al. 2011 ACCF/AHA/SCAI Guideline for percutaneous coronary intervention: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines and the Society for Cardiovascular Angiography and Interventions. Circulation. 124(23):e574–e651, 2011.

    Article  PubMed  Google Scholar 

  20. 20.

    Liu, Y., B. Li, C. Wu, and L. Kong. Experimental investigation and modeling of catheter temperature in atherectomy. J. Med. Biol. Eng. 2017. https://doi.org/10.1007/s40846-017-0301-x.

    Google Scholar 

  21. 21.

    Liu, Y., B. Li, Y. Zheng, and A. J. Shih. Experiment and smooth particle hydrodynamics simulation of debris size in grinding of calcified plaque in atherectomy. CIRP Ann. 66(1):325–328, 2017.

    Article  Google Scholar 

  22. 22.

    Maejima, N., K. Hibi, K. Saka, E. Akiyama, M. Konishi, M. Endo, et al. Relationship between thickness of calcium on optical coherence tomography and crack formation after balloon dilatation in calcified plaque requiring rotational atherectomy. Circ. J. 80(6):1413–1419, 2016.

    Article  PubMed  Google Scholar 

  23. 23.

    Merrill, E. W., and G. A. Pelletier. Viscosity of human blood: transition from Newtonian to non-Newtonian. J. Appl. Physiol. 23(2):178–182, 1967.

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Moore, J. J., and A. B. Palazzolo. Rotordynamic force prediction of whirling centrifugal impeller shroud passages using computational fluid dynamic techniques. J. Eng. Gas Turbines Power. 123(4):910–918, 1999.

    Article  Google Scholar 

  25. 25.

    Moore, J. J., D. L. Ransom, and F. Viana. Rotordynamic force prediction of centrifugal compressor impellers using computational fluid dynamic techniques. J. Eng. Gas Turbines Power. 133(4):042504, 2010.

    Article  Google Scholar 

  26. 26.

    Moscucci, M. Complications of Cardiovascular Procedures: Risk Factors, Management, and Bailout Techniques. Philadelphia: Lippincott Williams & Wilkins, 503 pp., 2011.

    Google Scholar 

  27. 27.

    Mota, P., A. de Belder, and A. Leitão-Marques. Rotational atherectomy: Technical update. Rev. Port Cardiol. 34(4):271–278, 2015.

    PubMed  Google Scholar 

  28. 28.

    Mukherjee, D., E. Bates, M. Roffi, and D. Moliterno. Cardiovascular Catheterization and Intervention: A Textbook of Coronary, Peripheral, and Structural Heart Disease. Boca Raton: CRC Press, 391 pp., 2010.

    Google Scholar 

  29. 29.

    Safian, R. D., T. Feldman, D. W. Muller, D. Mason, T. Schreiber, B. Haik, et al. Coronary angioplasty and rotablator atherectomy trial (CARAT): immediate and late results of a prospective multicenter randomized trial. Catheter Cardiovasc. Interv. 53:213–220, 2001.

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    Sakakura, K., Y. Taniguchi, M. Matsumoto, H. Wada, S. Momomura, and H. Fujita. How should we perform rotational atherectomy to an angulated calcified lesion? Int. Heart J. 57(3):376–379, 2016.

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Shih, A., Y. Liu, and Y. Zheng. Grinding wheel motion, force, temperature, and material removal in rotational atherectomy of calcified plaque. CIRP Ann. 65(1):345–348, 2016.

    Article  Google Scholar 

  32. 32.

    Taylor, G. I. Stability of a viscous liquid contained between two rotating cylinders. Philos. Trans. R. Soc. A. 223:289–343, 1923.

    Article  Google Scholar 

  33. 33.

    Thielicke, W., and E. J. Stamhuis. PIVlab–towards user-friendly, affordable and accurate digital particle image velocimetry in MATLAB. J. Open Res. Softw. 2(1):e30, 2014.

    Google Scholar 

  34. 34.

    Tomey, M. I., A. S. Kini, and S. K. Sharma. Current status of rotational atherectomy. J. Am. Coll. Cardiol. Interv. 7(4):345–353, 2014.

    Article  Google Scholar 

  35. 35.

    Tomey, M. I., and S. K. Sharma. Interventional options for coronary artery calcification. Curr. Cardiol. Rep. 18(2):12, 2016.

    Article  PubMed  Google Scholar 

  36. 36.

    Untaroiu, A., C. D. Untaroiu, H. G. Wood, and P. E. Allaire. Numerical modeling of fluid-induced rotordynamic forces in seals with large aspect ratios. J. Eng. Gas Turbines Power. 135(1):012501, 2012.

    Article  Google Scholar 

  37. 37.

    vom Dahl, J., U. Dietz, P. K. Haager, S. Silber, L. Niccoli, H. J. Buettner, et al. Rotational atherectomy does not reduce recurrent in-stent restenosis: results of the angioplasty versus rotational atherectomy for treatment of diffuse in-stent restenosis trial (ARTIST). Circulation 105(5):583–588, 2002.

    Article  PubMed  Google Scholar 

  38. 38.

    Wei, Z. H., J. Xie, L. Wang, W. Huang, K. Wang, L. N. Kang, et al. Therapeutic effect of rotational atherectomy with implantation of drug eluting stent in heavily coronary calcified patients. J. Geriatr. Cardiol. 13(3):233–238, 2016.

    PubMed  PubMed Central  Google Scholar 

  39. 39.

    White, M. F. Fluid Mechanics. New York: McGraw-Hill, 736 pp., 1994.

    Google Scholar 

  40. 40.

    Whitlow, P. L., T. A. Bass, R. M. Kipperman, B. L. Sharaf, K. K. Ho, D. E. Cutlip, et al. Results of the study to determine rotablator and transluminal angioplasty strategy (STRATAS). Am. J. Cardiol. 87(6):699–705, 2001.

    CAS  Article  PubMed  Google Scholar 

  41. 41.

    Wolf, Y. G., Z. Kobzantsev, and L. Zelmanovich. Size of normal and aneurysmal popliteal arteries: a duplex ultrasound study. J. Vasc. Surg. 43(3):488–492, 2006.

    Article  PubMed  Google Scholar 

  42. 42.

    Zhang, B., F. Wang, J. W. Tan, H. Liao, W. Chai, H. Yu, et al. The application of rotational atherectomy in PCI of coronary chronic total occlusions. ASEAN Heart J. 24(1):1–4, 2016.

    Article  PubMed Central  Google Scholar 

  43. 43.

    Zheng, Y., B. Belmont, and A. J. Shih. Experimental investigation of the abrasive crown dynamics in orbital atherectomy. Med. Eng. Phys. 38(7):639–647, 2016.

    Article  PubMed  Google Scholar 

  44. 44.

    Zheng, Y., Y. Liu, Y. Liu, and A. J. Shih. Experimental investigation of the grinding force in rotational atherectomy. Procedia Manuf. 5:838–848, 2016.

    Article  Google Scholar 

  45. 45.

    Zimarino, M., T. Corcos, E. Bramucci, and C. Tamburino. Rotational atherectomy: a “survivor” in the drug-eluting stent era. Cardiovasc. Revasc. Med. 13(3):185–192, 2012.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The research is supported by the National Science Foundation (Award CMMI #1232655). We acknowledge Boston Scientific for the support of the rotational atherectomy devices in this study.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yihao Zheng.

Additional information

Associate Editor Lakshmi Prasad Dasi oversaw the review of this article.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zheng, Y., Liu, Y., Pitre, J.J. et al. Computational Fluid Dynamics Modeling of the Burr Orbital Motion in Rotational Atherectomy with Particle Image Velocimetry Validation. Ann Biomed Eng 46, 567–578 (2018). https://doi.org/10.1007/s10439-018-1984-z

Download citation

Keywords

  • Hydraulic force
  • Burr-to-artery ratio
  • Rotational speed
  • Atherosclerosis