Skip to main content
Log in

Real-Time Closed Loop Diastolic Interval Control Prevents Cardiac Alternans in Isolated Whole Rabbit Hearts

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Cardiac alternans, a beat-to-beat alternation in action potential duration (APD), can lead to fatal arrhythmias. During periodic pacing, changes in diastolic interval (DI) depend on subsequent changes in APD, thus enhancing cardiac instabilities through a ‘feedback’ mechanism. Recently, an anti-arrhythmic Constant DI pacing protocol was proposed and shown to be effective in suppressing alternans in 0D and 1D in silico studies. However, previous experimental validation of Constant DI pacing in the heart has been unsuccessful due to the spatio-temporal complexity of 2D cardiac tissue and the technical challenges in its real-time implementation. Here, we developed a novel closed loop system to detect T-waves from real-time ECG data, enabling successful implementation of Constant DI pacing protocol, and performed high-resolution optical mapping experiments on isolated whole rabbit hearts to validate its anti-arrhythmic effects. The results were compared with: (1) Periodic pacing (feedback inherent) and (2) pacing with heart rate variability (HRV) (feedback modulation) introduced by using either Gaussian or Physiological patterns. We observed that Constant DI pacing significantly suppressed alternans in the heart, while maintaining APD spatial dispersion and flattening the slope of the APD restitution curve, compared to traditional Periodic pacing. In addition, introduction of HRV in Periodic pacing failed to prevent cardiac alternans, and was arrhythmogenic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Banville, I., and R. A. Gray. Effect of action potential duration and conduction velocity restitution and their spatial dispersion on alternans and the stability of arrhythmias. J Cardiovasc. Electrophysiol. 13(11):1141–1149, 2002.

    Article  PubMed  Google Scholar 

  2. Cherry, E. M. Distinguishing mechanisms for alternans in cardiac cells using constant-diastolic-interval pacing. Chaos 27(9):093902, 2017.

    Article  PubMed  Google Scholar 

  3. Christini, D. J., and J. J. Collins. Using chaos control and tracking to suppress a pathological nonchaotic rhythm in a cardiac model. Phys. Rev. E. 53(1):R49–R52, 1996.

    Article  CAS  Google Scholar 

  4. Christini, D. J., M. L. Riccio, C. A. Culianu, J. J. Fox, A. Karma, and R. F. Gilmour, Jr. Control of electrical alternans in canine cardiac purkinje fibers. Phys. Rev. Lett. 96(10):104101, 2006.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Echebarria, B., and A. Karma. Spatiotemporal control of cardiac alternans. Chaos 12(3):923–930, 2002.

    Article  PubMed  Google Scholar 

  6. Fox, J. J., J. L. McHarg, and R. F. Gilmour, Jr. Ionic mechanism of electrical alternans. Am. J. Physiol. Heart Circ. Physiol. 282(2):H516–H530, 2002.

    Article  CAS  PubMed  Google Scholar 

  7. Garzón, A., R. O. Grigoriev, and F. H. Fenton. Model-based control of cardiac alternans on a ring. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 80(2):021932, 2009.

    Article  Google Scholar 

  8. Garzón, A., R. O. Grigoriev, and F. H. Fenton. Model-based control of cardiac alternans in Purkinje fibers. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 84(4):041927, 2011.

    Article  Google Scholar 

  9. Garzón, A., R. O. Grigoriev, and F. H. Fenton. Continuous-time control of alternans in long Purkinje fibers. Chaos 24(3):033124, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Gilmour, Jr, R. F. Electrical restitution and ventricular fibrillation: negotiating a slippery slope. J. Cardiovasc. Electrophysiol. 13:1150–1151, 2002.

    Article  PubMed  Google Scholar 

  11. Hall, K., D. J. Christini, M. Tremblay, J. J. Collins, L. Glass, and J. Billette. Dynamic control of cardiac alternans. Phys. Rev. Lett. 78:4518, 1997.

    Article  CAS  Google Scholar 

  12. Hall, G. M., and D. J. Gauthier. Experimental control of cardiac muscle alternans. Phys. Rev. Lett. 88(19):198102, 2002.

    Article  PubMed  Google Scholar 

  13. Jordan, P. N., and D. J. Christini. Adaptive diastolic interval control of cardiac action potential duration alternans. J. Cardiovasc. Electrophysiol. 15(10):1177–1185, 2004.

    Article  PubMed  Google Scholar 

  14. Kanu, U. B., S. Iravanian, R. F. Gilmour, and D. J. Christini. Control of action potential duration alternans in canine cardiac ventricular tissue. IEEE Trans. Biomed. Eng. 58(4):894–904, 2011.

    Article  PubMed  Google Scholar 

  15. Karma, A. Electrical alternans and spiral wave breakup in cardiac tissue. Chaos 4(3):461–472, 1994.

    Article  PubMed  Google Scholar 

  16. Kulkarni, K., R. Visweswaran, X. Zhao, and E. G. Tolkacheva. Characterizing spatial dynamics of bifurcation to alternans in isolated whole rabbit hearts based on alternate pacing. Biomed. Res. Int. 2015:170768, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Malik, M. Heart rate variability. Ann. Noninvasive Electrocardiol. 1:151–181, 1996.

    Article  Google Scholar 

  18. McIntyre, S. D., V. Kakade, Y. Mori, and E. G. Tolkacheva. Heart rate variability and alternans formation in the heart: the role of feedback in cardiac dynamics. J. Theor. Biol. 350:90–97, 2014.

    Article  PubMed  Google Scholar 

  19. Otani, N. F. Theory of the development of alternans in the heart during controlled diastolic interval pacing. Chaos 27(9):093935, 2017.

    Article  PubMed  Google Scholar 

  20. Rappel, W. J., F. Fenton, and A. Karma. Spatiotemporal control of wave instabilities in cardiac tissue. Phys. Rev. Lett. 83:456, 1999.

    Article  CAS  Google Scholar 

  21. Riccio, M. L., M. L. Koller, and R. F. Gilmour. Electrical restitution and spatiotemporal organization during ventricular fibrillation. Circ. Res. 84(8):955–963, 1999.

    Article  CAS  PubMed  Google Scholar 

  22. Sato, D., and C. E. Clancy. Cardiac electrophysiological dynamics from the cellular level to the organ level. Biomed. Eng. Comput. Biol. 5:69–75, 2013.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Sookan, T., and A. J. McKune. Heart rate variability in physically active individuals: reliability and gender characteristics. Cardiovasc. J. Afr. 23(2):67–72, 2012.

    PubMed  PubMed Central  Google Scholar 

  24. Stauss, H. M. Heart rate variability. Am. J. Phys. Regul. Integr. Comp. Physiol. 285(5):R927–R931, 2003.

    Article  CAS  Google Scholar 

  25. Tolkacheva, E. G., M. M. Romeo, M. Guerraty, and D. J. Gauthier. Condition for alternans and its control in a two-dimensional mapping model of paced cardiac dynamics. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 69(3 Pt 1):031904, 2004.

    Article  Google Scholar 

  26. Tolkacheva, E. G., and X. Zhao. Nonlinear dynamics of periodically paced cardiac tissue. Nonlinear Dyn. 68:347–376, 2012.

    Article  Google Scholar 

  27. Tse, G., S. T. Wong, V. Tse, Y. T. Lee, H. Y. Lin, and J. M. Yeo. Cardiac dynamics: alternans and arrhythmogenesis. J. Arrhythm. 32(5):411–417, 2016.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Visweswaran, R., S. D. McIntyre, K. Ramkrishnan, X. Zhao, and E. G. Tolkacheva. Spatiotemporal evolution and prediction of [Ca(2+)]i and APD alternans in isolated whole rabbit hearts. J. Cardiovasc. Electrophysiol. 24(11):1287–1295, 2013.

    Article  PubMed  Google Scholar 

  29. Watanabe, M., N. F. Otani, and R. F. Gilmour, Jr. Biphasic restitution of action potential duration and complex dynamics in ventricular myocardium. Circ. Res. 76(5):915–921, 1995.

    Article  CAS  PubMed  Google Scholar 

  30. Wu, R., and A. Patwardhan. Mechanism of repolarization alternans has restitution of action potential duration dependent and independent components. J. Cardiovasc. Electrophysiol. 17(1):87–93, 2006.

    Article  PubMed  Google Scholar 

  31. Zlochiver, S., C. Johnson, and E. G. Tolkacheva. Constant DI pacing suppresses cardiac alternans formation in numerical cable models. Chaos 27(9):093903, 2017.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was funded by the National Institute of Health F31HL129544 (to S.W.L.) and R21HL128790 (to E.G.T.), National Science Foundation CAREER PHY-125541 and DCSD 1662250. This work was conducted as a part of the Prediction and Control of Cardiac Alternans Working Group at the National Institute for Mathematical and Biological Synthesis, sponsored by the National Science Foundation through NSF Award #DBI-1300426.

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena G. Tolkacheva.

Additional information

Associate Editor Ellen Kuhl oversaw the review of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 151 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kulkarni, K., Lee, S.W., Kluck, R. et al. Real-Time Closed Loop Diastolic Interval Control Prevents Cardiac Alternans in Isolated Whole Rabbit Hearts. Ann Biomed Eng 46, 555–566 (2018). https://doi.org/10.1007/s10439-018-1981-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-018-1981-2

Keywords

Navigation