Abstract
The balanced initial fixation of an implant makes up a crucial condition for its long-term survival. However, the quantification of initial fixation is no easy task and, to date, only qualitative assessments can be made. Although the concept of measuring fixation by means of vibration analysis is already widely used in dental implantology, the rigorous application of this method for the assessment of the fixation of femoral and acetabular components remains a challenge. Moreover, most studies on this subject have tended to focus solely on the femoral stem even though acetabular cup fixation is also important and even more difficult with respect to qualitative measurement. This study describes a comprehensive experiment aimed at assessing acetabular cup fixation. Fixation is expressed in terms of the impact force and polar gap variables, which are correlated with the modal properties of the acetabular implant during the various insertion stages. The predictive capabilities of modal frequencies and frequency functions were investigated by means of surrogate models based on the Gaussian process and functional principal component analysis. The prediction accuracy of the proposed models was in the range 82–94%. The results indicate that natural frequencies, reduced frequency, impact force and polar gap features provide great potential in terms of the prediction of implant fixation.
This is a preview of subscription content, access via your institution.







References
Ahnfelt, L., P. Herberts, H. Malchau, and G. Andersson. Prognosis of total hip replacement: a swedish multicenter study of 4664 revisions. Acta Orthop. Scand. 61:2–26, 1990.
Alshuhri, A. A., T. P. Holsgrove, A. W. Miles, and J. L. Cunningham. Development of a non-invasive diagnostic technique for acetabular component loosening in total hip replacements. Med. Eng. Phys. 37:739–745, 2015.
Alshuhri, A. A., T. P. Holsgrove, A. W. Miles, and J. L. Cunningham. Non-invasive vibrometry-based diagnostic detection of acetabular cup loosening in total hip replacement (thr). 48:188–195, 2017.
Amirouche, F., G. Solitro, S. Broviak, M. Gonzalez, W. Goldstein, and R. Barmada. Factors influencing initial cup stability in total hip arthroplasty. Clin. Biomech. 29:1177–1185, 2014.
Arami, A., J.-R. Delaloye, H. Rouhani, B. M. Jolles, and K. Aminian. Knee implant loosening detection: a vibration analysis investigation. Ann. Biomed. Eng. 46:97–107, 2017.
ASTM. 1621, Standard Test Method for Compressive Properties of Rigid Cellular Plastics. New York: American Society for Testing and Materials, 2010.
Cabboi, A., F. Magalhães, C. Gentile, and Á. Cunha. Automated modal identification and tracking: Application to an iron arch bridge. Struct. Control Health Monit. 2017. https://doi.org/10.1002/stc.1854.
Clasbrummel, B., B. Jettkant, N. DeLuca, G. Muhr, and G. Möllenhoff. Endoprothesenlockerungen. Trauma Berufskrankh. 9:84–87, 2007.
Clohisy, J. C., G. Calvert, F. Tull, D. McDonald, and W. J. Maloney. Reasons for revision hip surgery: a retrospective review. Clin. Orthop. Relat. Res. 429:188–192, 2004.
Corbett, K. L., E. Losina, A. A. Nti, J. J. Prokopetz, and J. N. Katz. Population-based rates of revision of primary total hip arthroplasty: a systematic review. PLoS ONE 5:e13520, 2010.
Cristofolini, L., E. Varini, I. Pelgreffi, A. Cappello, and A. Toni. Device to measure intra-operatively the primary stability of cementless hip stems. Med. Eng. Phys. 28:475–482, 2006.
Ewins, D. J. Modal Testing: Theory and Practice, Vol. 15. Letchworth: Research Studies Press, 1984.
Farrar, C. R., and K. Worden. An introduction to structural health monitoring. Philos. Trans. R. Soc. Lond. A 365:303–315, 2007.
Fehring, K. A., J. R. Owen, A. A. Kurdin, J. S. Wayne, and W. A. Jiranek. Initial stability of press-fit acetabular components under rotational forces. J. Arthroplast 29:1038–1042, 2014.
Friberg, B., L. Sennerby, B. Linden, K. Gröndahl, and U. Lekholm. Stability measurements of one-stage brånemark implants during healing in mandibles: a clinical resonance frequency analysis study. Int. J. Oral Maxillofac. Surg. 28:266–272, 1999.
Fritsche, A., K. Bialek, W. Mittelmeier, M. Simnacher, K. Fethke, A. Wree, and R. Bader. Experimental investigations of the insertion and deformation behavior of press-fit and threaded acetabular cups for total hip replacement. J. Orthop. Sci. 13:240–247, 2008.
Fritsche, A., C. Zietz, S. Teufel, W. Kolp, I. Tokar, C. Mauch, W. Mittelmeier, and R. Bader. A851, in-vitro and in-vivo investigations of the impaction and pull-out behavior of metal-backed acetabular cups. In: Orthopaedic Proceedings, Vol. 93, pp. 406–406, 2011.
Georgiou, A., and J. Cunningham. Accurate diagnosis of hip prosthesis loosening using a vibrational technique. Clin. Biomech. 16:315–323, 2001.
Geraldes, D. M., U. Hansen, J. Jeffers, and A. A. Amis. Stability of small pegs for cementless implant fixation. J. Orthop. Res. 35:2765–2772, 2017.
Harris, W. Aseptic loosening in total hip arthroplasty secondary to osteolysis induced by wear debris from titanium-alloy modular femoral heads. JBJS. 73:470–472, 1991.
Henys, P., L. Capek, J. Fencl, and E. Prochazka. Evaluation of acetabular cup initial fixation by using resonance frequency principle. Proc. Inst. Mech. Eng. H. 229:3–8, 2015.
Huang, H.-M., C.-L. Chiu, C.-Y. Yeh, C.-T. Lin, L.-H. Lin, and S.-Y. Lee. Early detection of implant healing process using resonance frequency analysis. Clin. Oral Implants Res. 14:437–443, 2003.
Huiskes, R. Failed innovation in total hip replacement: diagnosis and proposals for a cure. Acta Orthop. Scand. 64:699–716, 1993.
Huo, M., R. Schneider, E. Salvati, S. Rodi et al. Evaluation of painful hip arthroplasties. Are technetium bone scans necessary? Bone Joint J. 75:475–478, 1993.
Iorio, R., W. L. Healy, and A. H. Presutti. A prospective outcomes analysis of femoral component fixation in revision total hip arthroplasty. J. Arthroplast. 23:662–669, 2008.
Jaecques, S., C. Pastrav, A. Zahariuc, and G. Van der Perre. Analysis of the fixation quality of cementless hip prostheses using a vibrational technique. In: Proceedings of ISMA 2004 International Conference on Noise and Vibration Engineering: 20–22 September 2004, KU Leuven, pp. 443–456, 2004
Khalily, C., and L. A. Whiteside. Predictive value of early radiographic findings in cementless total hip arthroplasty femoral components: an 8-to 12-year follow-up. J. Arthroplast. 13:768–773, 1998.
Kim, Y. S., J. J. Callaghan, P. B. Ahn, and T. D. Brown. Fracture of the acetabulum during insertion of an oversized hemispherical component. JBJS. 77:111–117, 1995.
Kobayashi, A., W. Donnelly, G. Scott, and M. Freeman. Early radiological observations may predict the long-term survival of femoral hip prostheses. J. Bone Joint Surg. Br. 79:583–589, 1997.
Kobayashi, S., K. Takaoka, N. Saito, and K. Hisa. Factors affecting aseptic failure of fixation after primary charnley total hip arthroplasty multivariate survival analysis. JBJS. 79:1618–1627, 1997.
Köster, G., D. Munz, and H.-P. Köhler. Clinical value of combined contrast and radionuclide arthrography in suspected loosening of hip prostheses. Arch. Orthop. Trauma Surg. 112:247–254, 1993.
Kuchler, U., V. Chappuis, M. M. Bornstein, M. Siewczyk, R. Gruber, L. Maestre, and D. Buser. Development of implant stability quotient values of implants placed with simultaneous sinus floor elevation-results of a prospective study with 109 implants. Clin. Oral Implants Res. 28:109–115, 2017.
Kwong, L. M., D. O. O’Connor, R. C. Sedlacek, R. J. Krushell, W. J. Maloney, and W. H. Harris. A quantitative in vitro assessment of fit and screw fixation on the stability of a cementless hemispherical acetabular component. J. Arthroplast. 9:163–170, 1994.
Lachiewicz, P., and E. Soileau. Changing indications for revision total hip arthroplasty. J. Surg. Orthop. Adv. 14:82–84, 2005.
Lautiainen, I. A., J. Joukainen, and E. A. Mäkelä. Clinical and roentgenographic results of cementless total hip arthroplasty. J. Arthroplast. 9:653–660, 1994.
Lombardi Jr, A. V., T. Mallory, B. Vaughn, and P. Drouillard. Aseptic loosening in total hip arthroplasty secondary to osteolysis induced by wear debris from titanium-alloy modular femoral heads. JBJS. 71:1337–1342, 1989.
Macdonald, W., L. Carlsson, G. Charnley, and C. Jacobsson. Press-fit acetabular cup fixation: principles and testing. Proc. Inst. Mech. Eng. H. 213:33–39, 1999.
MacKay, D. J. Bayesian methods for backpropagation networks. In: Models of Neural Networks III. New York: Springer, pp. 211–254, 1996.
Mackenzie, J. R., J. J. Callaghan, D. R. Pedersen, and T. D. Brown. Areas of contact and extent of gaps with implantation of oversized acetabular components in total hip arthroplasty. Clin. Orthop. Relat. Res. 298:127–136, 1994.
McHutchon, A., and C. E. Rasmussen. Gaussian process training with input noise. In: Advances in Neural Information Processing Systems, pp. 1341–1349, 2011.
Meneghini, R. M., C. Meyer, C. A. Buckley, A. D. Hanssen, and D. G. Lewallen. Mechanical stability of novel highly porous metal acetabular components in revision total hip arthroplasty. J. Arthroplast. 25:337–341, 2010.
Meredith, N., D. Alleyne, and P. Cawley. Quantitative determination of the stability of the implant-tissue interface using resonance frequency analysis. Clin. Oral Implants Res. 7:261–267, 1996.
Michel, A., R. Bosc, J.-P. Meningaud, P. Hernigou, and G. Haiat. Assessing the acetabular cup implant primary stability by impact analyses: a cadaveric study. PLoS ONE 11:e0166778, 2016.
Michel, A., R. Bosc, F. Sailhan, R. Vayron, and G. Haiat. Ex vivo estimation of cementless acetabular cup stability using an impact hammer. Med. Eng. Phys. 38:80–86, 2016.
Olory, B., E. Havet, A. Gabrion, J. Vernois, and P. Mertl. Comparative in vitro assessment of the primary stability of cementless press-fit acetabular cups. Acta Orthop. Belg. 70:31–37, 2004.
Ovesen, O., P. Riegels-Nielsen, S. Lindequist, I. Jensen, T. Munkner, T. Torfing, and J. Marving. The diagnostic value of digital subtraction arthrography and radionuclide bone scan in revision hip arthroplasty. J. Arthroplast. 18:735–740, 2003.
Oyen, W. J., J. A. Lemmens, R. A. Claessens, J. R. van Horn, T. J. Slooff, and F. H. Corstens. Nuclear arthrography: combined scintigraphic and radiographic procedure for diagnosis of total hip prosthesis loosening. J. Nucl. Med. 37(1):62–70, 1996.
Pandey, A., M. Biswas, and M. Samman. Damage detection from changes in curvature mode shapes. J. Sound Vib. 145:321–332, 1991.
Park, H. S., J. K. Choi, and J. K. Seo. Characterization of metal artifacts in X-ray computed tomography. Commun. Pure Appl. Math. 70:2191–2217, 2017.
Pastrav, L. C., S. V. Jaecques, I. Jonkers, G. Van der Perre, and M. Mulier. In vivo evaluation of a vibration analysis technique for the per-operative monitoring of the fixation of hip prostheses. J. Orthop. Surg. Res. 4:10, 2009.
Pastrav, L. C., S. Leuridan, K. Denis, S. Jaecques, M. Mulier, G. Van der Perre, and J. Vander Sloten. Intra-operative monitoring of orthopaedic implant stability by vibration analysis, 2012.
Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg et al. Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12:2825–2830, 2011.
Peeters, B., M. El-kafafy, and P. Guillaume. The new polymax plus method: confident modal parameter estimation even in very noisy cases. In: Proceedings of the ISMA. 2012.
Puers, R., M. Catrysse, G. Vandevoorde, R. Collier, E. Louridas, F. Burny, M. Donkerwolcke, and F. Moulart. A telemetry system for the detection of hip prosthesis loosening by vibration analysis. Sens. Actuators A. 85:42–47, 2000.
Ramsay, J. O. Functional Data Analysis. Hoboken: Wiley, 2006.
Rosenstein, A., G. McCoy, C. Bulstrode, P. McLardy-Smith, J. Cunningham, and A. Turner-Smith. The differentiation of loose and secure femoral implants in total hip replacement using a vibrational technique: an anatomical and pilot clinical study. Proc. Inst. Mech. Eng. H. 203:77–81, 1989.
Rosi, G., V.-H. Nguyen, A. Tijou, R. Bosc, and G. Haiat. Determination of the acetabular cup implant stability using an acoustic method based on the impact between the hammer and the ancillary. J. Acoust. Soc. Am. 141:3831–3831, 2017.
Selvik, G. Roentgen stereophotogrammetry: a method for the study of the kinematics of the skeletal system. Acta Orthop. Scand. 60:1–51, 1989.
Sennerby, L. and N. Meredith. Implant stability measurements using resonance frequency analysis: biological and biomechanical aspects and clinical implications. Periodontology 2000(47):51–66, 2008.
Sharkey, P. F., W. J. Hozack, J. J. Callaghan, Y. S. Kim, D. J. Berry, A. D. Hanssen, and D. G. LeWallen. Acetabular fracture associated with cementless acetabular component insertion: a report of 13 cases. J. Arthroplast.14:426–431, 1999.
Spears, I. R., M. Pfleiderer, E. Schneider, E. Hille, and M. M. Morlock. The effect of interfacial parameters on cup-bone relative micromotions: a finite element investigation. J. Biomech. 34:113–120, 2001.
Temmerman, O. P., P. G. Raijmakers, J. Berkhof, E. F. David, R. Pijpers, M. A. Molenaar, O. S. Hoekstra, G. J. Teule, and I. C. Heyligers. Diagnostic accuracy and interobserver variability of plain radiography, subtraction arthrography, nuclear arthrography, and bone scintigraphy in the assessment of aseptic femoral component loosening. Arch. Orthop. Trauma Surg. 126:316–323, 2006.
Temmerman, O. P. P. A comparison of radiographic and scintigraphic techniques to assess aseptic loosening of a total hip prosthesis, 2007.
Valstar, E. R., F. De Jong, H. Vrooman, P. Rozing, and J. Reiber. Model-based roentgen stereophotogrammetry of orthopaedic implants. J. Biomech. 34:715–722, 2001.
Valstar, E. R., R. G. Nelissen, J. H. Reiber, and P. M. Rozing. The use of roentgen stereophotogrammetry to study micromotion of orthopaedic implants. ISPRS J. Photogramm. Remote Sens. 56:376–389, 2002.
Verboven, P. Frequency-Domain System Identification for Modal Analysis. Brussels: Vrije Universiteit Brussel, 2002.
Verboven, P., E. Parloo, P. Guillaume, and M. Van Overmeire. Autonomous modal parameter estimation based on a statistical frequency domain maximum likelihood approach. In: Proceedings, International Modal Analysis Conference (IMAC), p. 15111517, 2001.
Vresilovic, E. J., W. J. Hozack, and R. H. Rothman. Radiographic assessment of cementless femoral components: correlation with intraoperative mechanical stability. J. Arthroplast. 9:137–141, 1994.
Weeden, S. H. and W. G. Paprosky. Minimal 11-year follow-up of extensively porous-coated stems in femoral revision total hip arthroplasty. J. Arthroplast. 17:134–137, 2002.
Conflict of interest
The authors declare that they have no conflict of interest.
Author information
Authors and Affiliations
Corresponding author
Additional information
Associate Editor Peter E. McHugh oversaw the review of this article.
Appendix A
Appendix A
A.1 Coherence Function
The coherence function \(\gamma ^{2}\) between output Y and input X is defined as:
where \(G_{xy}(f)\) is the cross-spectral function and \(G_{xx}, G_{yy}\) are auto-spectral power functions. The function is strictly real and positive with values of 0–1.
A.2 Modal Assurance Criterion
The MAC criterion is defined as a real-value function of two modal shape vectors \(\phi _{1}, \phi _{2}\):
The MAC function has a range of 0–1.
A.3 Spectral Evolution During the Insertion of the Implant
Typical bone-implant assembly frequency responses at different insertion steps. Only 20% of the samples are shown. The number of samples per one run varied from 50 to 60 (Fig. 8).
A.4 Reproducibility Test
The shape similarity of any two curves \(f_{1}(x),\, f_{2}(x)\) was measured by dot product metric defined as:
where \(\big (\cdot , \cdot \big )\) is an inner product defined at \(L^{2}\) function space:
The denominator represents a norm:
This metric has a range of −1–1. The discrete data was smoothed and represented by b-spline approximation functions (fda package, R-project) (Fig. 9 and Table 5).55
A.5 Inelastic Bone Deformation
Tests on inelastic bone deformation due to repeated use and the post-fracture stiffness of bone sample #1 (Fig. 10 and Table 6).
A.6 Material Properties of the Composite Bone
The material from which the model was constructed comprised a composite mixture of short glass-fibres and poly-acrylate resin (outer cortical shell) and solid foam (inner core) (Table 7).
A.7 Iterative Removing of Irrelevant Features
If the length-scale l is large with respect to the others then the corresponding feature is deemed irrelevant. Such irrelevant features were iteratively removed so as to maintain the optimal level of model performance. The threshold was estimated according to a decrease in model accuracy \({ {f=\{R^{2}, {\text{MSE}}, \sigma _{\text{e}}\}}}\) of more than 5% following the removal of the feature (Fig. 11).
Rights and permissions
About this article
Cite this article
Henyš, P., Čapek, L. Impact Force, Polar Gap and Modal Parameters Predict Acetabular Cup Fixation: A Study on a Composite Bone. Ann Biomed Eng 46, 590–604 (2018). https://doi.org/10.1007/s10439-018-1980-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10439-018-1980-3
Keywords
- Pelvis
- Experimental modal analysis
- Gaussian process
- Functional principal component analysis
- Frequency response function
- Surrogate model