Skip to main content

Impact Force, Polar Gap and Modal Parameters Predict Acetabular Cup Fixation: A Study on a Composite Bone

Abstract

The balanced initial fixation of an implant makes up a crucial condition for its long-term survival. However, the quantification of initial fixation is no easy task and, to date, only qualitative assessments can be made. Although the concept of measuring fixation by means of vibration analysis is already widely used in dental implantology, the rigorous application of this method for the assessment of the fixation of femoral and acetabular components remains a challenge. Moreover, most studies on this subject have tended to focus solely on the femoral stem even though acetabular cup fixation is also important and even more difficult with respect to qualitative measurement. This study describes a comprehensive experiment aimed at assessing acetabular cup fixation. Fixation is expressed in terms of the impact force and polar gap variables, which are correlated with the modal properties of the acetabular implant during the various insertion stages. The predictive capabilities of modal frequencies and frequency functions were investigated by means of surrogate models based on the Gaussian process and functional principal component analysis. The prediction accuracy of the proposed models was in the range 82–94%. The results indicate that natural frequencies, reduced frequency, impact force and polar gap features provide great potential in terms of the prediction of implant fixation.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

References

  1. Ahnfelt, L., P. Herberts, H. Malchau, and G. Andersson. Prognosis of total hip replacement: a swedish multicenter study of 4664 revisions. Acta Orthop. Scand. 61:2–26, 1990.

    Article  Google Scholar 

  2. Alshuhri, A. A., T. P. Holsgrove, A. W. Miles, and J. L. Cunningham. Development of a non-invasive diagnostic technique for acetabular component loosening in total hip replacements. Med. Eng. Phys. 37:739–745, 2015.

    Article  PubMed  Google Scholar 

  3. Alshuhri, A. A., T. P. Holsgrove, A. W. Miles, and J. L. Cunningham. Non-invasive vibrometry-based diagnostic detection of acetabular cup loosening in total hip replacement (thr). 48:188–195, 2017.

    Article  PubMed  Google Scholar 

  4. Amirouche, F., G. Solitro, S. Broviak, M. Gonzalez, W. Goldstein, and R. Barmada. Factors influencing initial cup stability in total hip arthroplasty. Clin. Biomech. 29:1177–1185, 2014.

    Article  Google Scholar 

  5. Arami, A., J.-R. Delaloye, H. Rouhani, B. M. Jolles, and K. Aminian. Knee implant loosening detection: a vibration analysis investigation. Ann. Biomed. Eng. 46:97–107, 2017.

    Article  PubMed  PubMed Central  Google Scholar 

  6. ASTM. 1621, Standard Test Method for Compressive Properties of Rigid Cellular Plastics. New York: American Society for Testing and Materials, 2010.

  7. Cabboi, A., F. Magalhães, C. Gentile, and Á. Cunha. Automated modal identification and tracking: Application to an iron arch bridge. Struct. Control Health Monit. 2017. https://doi.org/10.1002/stc.1854.

    Google Scholar 

  8. Clasbrummel, B., B. Jettkant, N. DeLuca, G. Muhr, and G. Möllenhoff. Endoprothesenlockerungen. Trauma Berufskrankh. 9:84–87, 2007.

    Article  Google Scholar 

  9. Clohisy, J. C., G. Calvert, F. Tull, D. McDonald, and W. J. Maloney. Reasons for revision hip surgery: a retrospective review. Clin. Orthop. Relat. Res. 429:188–192, 2004.

    Article  Google Scholar 

  10. Corbett, K. L., E. Losina, A. A. Nti, J. J. Prokopetz, and J. N. Katz. Population-based rates of revision of primary total hip arthroplasty: a systematic review. PLoS ONE 5:e13520, 2010.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Cristofolini, L., E. Varini, I. Pelgreffi, A. Cappello, and A. Toni. Device to measure intra-operatively the primary stability of cementless hip stems. Med. Eng. Phys. 28:475–482, 2006.

    Article  CAS  PubMed  Google Scholar 

  12. Ewins, D. J. Modal Testing: Theory and Practice, Vol. 15. Letchworth: Research Studies Press, 1984.

    Google Scholar 

  13. Farrar, C. R., and K. Worden. An introduction to structural health monitoring. Philos. Trans. R. Soc. Lond. A 365:303–315, 2007.

    Article  Google Scholar 

  14. Fehring, K. A., J. R. Owen, A. A. Kurdin, J. S. Wayne, and W. A. Jiranek. Initial stability of press-fit acetabular components under rotational forces. J. Arthroplast 29:1038–1042, 2014.

    Article  Google Scholar 

  15. Friberg, B., L. Sennerby, B. Linden, K. Gröndahl, and U. Lekholm. Stability measurements of one-stage brånemark implants during healing in mandibles: a clinical resonance frequency analysis study. Int. J. Oral Maxillofac. Surg. 28:266–272, 1999.

    Article  CAS  PubMed  Google Scholar 

  16. Fritsche, A., K. Bialek, W. Mittelmeier, M. Simnacher, K. Fethke, A. Wree, and R. Bader. Experimental investigations of the insertion and deformation behavior of press-fit and threaded acetabular cups for total hip replacement. J. Orthop. Sci. 13:240–247, 2008.

    Article  PubMed  Google Scholar 

  17. Fritsche, A., C. Zietz, S. Teufel, W. Kolp, I. Tokar, C. Mauch, W. Mittelmeier, and R. Bader. A851, in-vitro and in-vivo investigations of the impaction and pull-out behavior of metal-backed acetabular cups. In: Orthopaedic Proceedings, Vol. 93, pp. 406–406, 2011.

  18. Georgiou, A., and J. Cunningham. Accurate diagnosis of hip prosthesis loosening using a vibrational technique. Clin. Biomech. 16:315–323, 2001.

    Article  CAS  Google Scholar 

  19. Geraldes, D. M., U. Hansen, J. Jeffers, and A. A. Amis. Stability of small pegs for cementless implant fixation. J. Orthop. Res. 35:2765–2772, 2017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Harris, W. Aseptic loosening in total hip arthroplasty secondary to osteolysis induced by wear debris from titanium-alloy modular femoral heads. JBJS. 73:470–472, 1991.

    Article  CAS  Google Scholar 

  21. Henys, P., L. Capek, J. Fencl, and E. Prochazka. Evaluation of acetabular cup initial fixation by using resonance frequency principle. Proc. Inst. Mech. Eng. H. 229:3–8, 2015.

    Article  PubMed  Google Scholar 

  22. Huang, H.-M., C.-L. Chiu, C.-Y. Yeh, C.-T. Lin, L.-H. Lin, and S.-Y. Lee. Early detection of implant healing process using resonance frequency analysis. Clin. Oral Implants Res. 14:437–443, 2003.

    Article  PubMed  Google Scholar 

  23. Huiskes, R. Failed innovation in total hip replacement: diagnosis and proposals for a cure. Acta Orthop. Scand. 64:699–716, 1993.

    Article  CAS  PubMed  Google Scholar 

  24. Huo, M., R. Schneider, E. Salvati, S. Rodi et al. Evaluation of painful hip arthroplasties. Are technetium bone scans necessary? Bone Joint J. 75:475–478, 1993.

    Google Scholar 

  25. Iorio, R., W. L. Healy, and A. H. Presutti. A prospective outcomes analysis of femoral component fixation in revision total hip arthroplasty. J. Arthroplast. 23:662–669, 2008.

    Article  Google Scholar 

  26. Jaecques, S., C. Pastrav, A. Zahariuc, and G. Van der Perre. Analysis of the fixation quality of cementless hip prostheses using a vibrational technique. In: Proceedings of ISMA 2004 International Conference on Noise and Vibration Engineering: 20–22 September 2004, KU Leuven, pp. 443–456, 2004

  27. Khalily, C., and L. A. Whiteside. Predictive value of early radiographic findings in cementless total hip arthroplasty femoral components: an 8-to 12-year follow-up. J. Arthroplast. 13:768–773, 1998.

    Article  CAS  Google Scholar 

  28. Kim, Y. S., J. J. Callaghan, P. B. Ahn, and T. D. Brown. Fracture of the acetabulum during insertion of an oversized hemispherical component. JBJS. 77:111–117, 1995.

    Article  CAS  Google Scholar 

  29. Kobayashi, A., W. Donnelly, G. Scott, and M. Freeman. Early radiological observations may predict the long-term survival of femoral hip prostheses. J. Bone Joint Surg. Br. 79:583–589, 1997.

    Article  CAS  PubMed  Google Scholar 

  30. Kobayashi, S., K. Takaoka, N. Saito, and K. Hisa. Factors affecting aseptic failure of fixation after primary charnley total hip arthroplasty multivariate survival analysis. JBJS. 79:1618–1627, 1997.

    Article  CAS  Google Scholar 

  31. Köster, G., D. Munz, and H.-P. Köhler. Clinical value of combined contrast and radionuclide arthrography in suspected loosening of hip prostheses. Arch. Orthop. Trauma Surg. 112:247–254, 1993.

    Article  PubMed  Google Scholar 

  32. Kuchler, U., V. Chappuis, M. M. Bornstein, M. Siewczyk, R. Gruber, L. Maestre, and D. Buser. Development of implant stability quotient values of implants placed with simultaneous sinus floor elevation-results of a prospective study with 109 implants. Clin. Oral Implants Res. 28:109–115, 2017.

    Article  PubMed  Google Scholar 

  33. Kwong, L. M., D. O. O’Connor, R. C. Sedlacek, R. J. Krushell, W. J. Maloney, and W. H. Harris. A quantitative in vitro assessment of fit and screw fixation on the stability of a cementless hemispherical acetabular component. J. Arthroplast. 9:163–170, 1994.

    Article  CAS  Google Scholar 

  34. Lachiewicz, P., and E. Soileau. Changing indications for revision total hip arthroplasty. J. Surg. Orthop. Adv. 14:82–84, 2005.

    PubMed  Google Scholar 

  35. Lautiainen, I. A., J. Joukainen, and E. A. Mäkelä. Clinical and roentgenographic results of cementless total hip arthroplasty. J. Arthroplast. 9:653–660, 1994.

    Article  CAS  Google Scholar 

  36. Lombardi Jr, A. V., T. Mallory, B. Vaughn, and P. Drouillard. Aseptic loosening in total hip arthroplasty secondary to osteolysis induced by wear debris from titanium-alloy modular femoral heads. JBJS. 71:1337–1342, 1989.

    Article  Google Scholar 

  37. Macdonald, W., L. Carlsson, G. Charnley, and C. Jacobsson. Press-fit acetabular cup fixation: principles and testing. Proc. Inst. Mech. Eng. H. 213:33–39, 1999.

    Article  CAS  PubMed  Google Scholar 

  38. MacKay, D. J. Bayesian methods for backpropagation networks. In: Models of Neural Networks III. New York: Springer, pp. 211–254, 1996.

  39. Mackenzie, J. R., J. J. Callaghan, D. R. Pedersen, and T. D. Brown. Areas of contact and extent of gaps with implantation of oversized acetabular components in total hip arthroplasty. Clin. Orthop. Relat. Res. 298:127–136, 1994.

    Google Scholar 

  40. McHutchon, A., and C. E. Rasmussen. Gaussian process training with input noise. In: Advances in Neural Information Processing Systems, pp. 1341–1349, 2011.

    Google Scholar 

  41. Meneghini, R. M., C. Meyer, C. A. Buckley, A. D. Hanssen, and D. G. Lewallen. Mechanical stability of novel highly porous metal acetabular components in revision total hip arthroplasty. J. Arthroplast. 25:337–341, 2010.

    Article  Google Scholar 

  42. Meredith, N., D. Alleyne, and P. Cawley. Quantitative determination of the stability of the implant-tissue interface using resonance frequency analysis. Clin. Oral Implants Res. 7:261–267, 1996.

    Article  CAS  PubMed  Google Scholar 

  43. Michel, A., R. Bosc, J.-P. Meningaud, P. Hernigou, and G. Haiat. Assessing the acetabular cup implant primary stability by impact analyses: a cadaveric study. PLoS ONE 11:e0166778, 2016.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Michel, A., R. Bosc, F. Sailhan, R. Vayron, and G. Haiat. Ex vivo estimation of cementless acetabular cup stability using an impact hammer. Med. Eng. Phys. 38:80–86, 2016.

    Article  PubMed  Google Scholar 

  45. Olory, B., E. Havet, A. Gabrion, J. Vernois, and P. Mertl. Comparative in vitro assessment of the primary stability of cementless press-fit acetabular cups. Acta Orthop. Belg. 70:31–37, 2004.

    PubMed  Google Scholar 

  46. Ovesen, O., P. Riegels-Nielsen, S. Lindequist, I. Jensen, T. Munkner, T. Torfing, and J. Marving. The diagnostic value of digital subtraction arthrography and radionuclide bone scan in revision hip arthroplasty. J. Arthroplast. 18:735–740, 2003.

    Article  Google Scholar 

  47. Oyen, W. J., J. A. Lemmens, R. A. Claessens, J. R. van Horn, T. J. Slooff, and F. H. Corstens. Nuclear arthrography: combined scintigraphic and radiographic procedure for diagnosis of total hip prosthesis loosening. J. Nucl. Med. 37(1):62–70, 1996.

    CAS  PubMed  Google Scholar 

  48. Pandey, A., M. Biswas, and M. Samman. Damage detection from changes in curvature mode shapes. J. Sound Vib. 145:321–332, 1991.

    Article  Google Scholar 

  49. Park, H. S., J. K. Choi, and J. K. Seo. Characterization of metal artifacts in X-ray computed tomography. Commun. Pure Appl. Math. 70:2191–2217, 2017.

    Article  Google Scholar 

  50. Pastrav, L. C., S. V. Jaecques, I. Jonkers, G. Van der Perre, and M. Mulier. In vivo evaluation of a vibration analysis technique for the per-operative monitoring of the fixation of hip prostheses. J. Orthop. Surg. Res. 4:10, 2009.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Pastrav, L. C., S. Leuridan, K. Denis, S. Jaecques, M. Mulier, G. Van der Perre, and J. Vander Sloten. Intra-operative monitoring of orthopaedic implant stability by vibration analysis, 2012.

  52. Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg et al. Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12:2825–2830, 2011.

    Google Scholar 

  53. Peeters, B., M. El-kafafy, and P. Guillaume. The new polymax plus method: confident modal parameter estimation even in very noisy cases. In: Proceedings of the ISMA. 2012.

  54. Puers, R., M. Catrysse, G. Vandevoorde, R. Collier, E. Louridas, F. Burny, M. Donkerwolcke, and F. Moulart. A telemetry system for the detection of hip prosthesis loosening by vibration analysis. Sens. Actuators A. 85:42–47, 2000.

    Article  CAS  Google Scholar 

  55. Ramsay, J. O. Functional Data Analysis. Hoboken: Wiley, 2006.

    Book  Google Scholar 

  56. Rosenstein, A., G. McCoy, C. Bulstrode, P. McLardy-Smith, J. Cunningham, and A. Turner-Smith. The differentiation of loose and secure femoral implants in total hip replacement using a vibrational technique: an anatomical and pilot clinical study. Proc. Inst. Mech. Eng. H. 203:77–81, 1989.

    Article  CAS  PubMed  Google Scholar 

  57. Rosi, G., V.-H. Nguyen, A. Tijou, R. Bosc, and G. Haiat. Determination of the acetabular cup implant stability using an acoustic method based on the impact between the hammer and the ancillary. J. Acoust. Soc. Am. 141:3831–3831, 2017.

    Article  Google Scholar 

  58. Selvik, G. Roentgen stereophotogrammetry: a method for the study of the kinematics of the skeletal system. Acta Orthop. Scand. 60:1–51, 1989.

    Article  Google Scholar 

  59. Sennerby, L. and N. Meredith. Implant stability measurements using resonance frequency analysis: biological and biomechanical aspects and clinical implications. Periodontology 2000(47):51–66, 2008.

    Article  Google Scholar 

  60. Sharkey, P. F., W. J. Hozack, J. J. Callaghan, Y. S. Kim, D. J. Berry, A. D. Hanssen, and D. G. LeWallen. Acetabular fracture associated with cementless acetabular component insertion: a report of 13 cases. J. Arthroplast.14:426–431, 1999.

    Article  CAS  Google Scholar 

  61. Spears, I. R., M. Pfleiderer, E. Schneider, E. Hille, and M. M. Morlock. The effect of interfacial parameters on cup-bone relative micromotions: a finite element investigation. J. Biomech. 34:113–120, 2001.

    Article  CAS  PubMed  Google Scholar 

  62. Temmerman, O. P., P. G. Raijmakers, J. Berkhof, E. F. David, R. Pijpers, M. A. Molenaar, O. S. Hoekstra, G. J. Teule, and I. C. Heyligers. Diagnostic accuracy and interobserver variability of plain radiography, subtraction arthrography, nuclear arthrography, and bone scintigraphy in the assessment of aseptic femoral component loosening. Arch. Orthop. Trauma Surg. 126:316–323, 2006.

    Article  PubMed  Google Scholar 

  63. Temmerman, O. P. P. A comparison of radiographic and scintigraphic techniques to assess aseptic loosening of a total hip prosthesis, 2007.

  64. Valstar, E. R., F. De Jong, H. Vrooman, P. Rozing, and J. Reiber. Model-based roentgen stereophotogrammetry of orthopaedic implants. J. Biomech. 34:715–722, 2001.

    Article  CAS  PubMed  Google Scholar 

  65. Valstar, E. R., R. G. Nelissen, J. H. Reiber, and P. M. Rozing. The use of roentgen stereophotogrammetry to study micromotion of orthopaedic implants. ISPRS J. Photogramm. Remote Sens. 56:376–389, 2002.

    Article  Google Scholar 

  66. Verboven, P. Frequency-Domain System Identification for Modal Analysis. Brussels: Vrije Universiteit Brussel, 2002.

    Google Scholar 

  67. Verboven, P., E. Parloo, P. Guillaume, and M. Van Overmeire. Autonomous modal parameter estimation based on a statistical frequency domain maximum likelihood approach. In: Proceedings, International Modal Analysis Conference (IMAC), p. 15111517, 2001.

  68. Vresilovic, E. J., W. J. Hozack, and R. H. Rothman. Radiographic assessment of cementless femoral components: correlation with intraoperative mechanical stability. J. Arthroplast. 9:137–141, 1994.

    Article  CAS  Google Scholar 

  69. Weeden, S. H. and W. G. Paprosky. Minimal 11-year follow-up of extensively porous-coated stems in femoral revision total hip arthroplasty. J. Arthroplast. 17:134–137, 2002.

    Article  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petr Henyš.

Additional information

Associate Editor Peter E. McHugh oversaw the review of this article.

Appendix A

Appendix A

A.1 Coherence Function

The coherence function \(\gamma ^{2}\) between output Y and input X is defined as:

$$\begin{aligned} \gamma ^{2}(f) = \frac{G_{xy}(f)G_{xy}^{*}(f)}{G_{xx}(f)G_{yy}(f)} \end{aligned}$$
(2)

where \(G_{xy}(f)\) is the cross-spectral function and \(G_{xx}, G_{yy}\) are auto-spectral power functions. The function is strictly real and positive with values of 0–1.

A.2 Modal Assurance Criterion

The MAC criterion is defined as a real-value function of two modal shape vectors \(\phi _{1}, \phi _{2}\):

$$\begin{aligned} MAC(\phi _{1}, \phi _{2}) = \frac{\vert \phi _{1}\phi _{2}^{*}\vert ^{2}}{\phi _{1}\phi _{1}^{*}\phi _{2}\phi _{2}^{*}} \end{aligned}$$
(3)

The MAC function has a range of 0–1.

A.3 Spectral Evolution During the Insertion of the Implant

Typical bone-implant assembly frequency responses at different insertion steps. Only 20% of the samples are shown. The number of samples per one run varied from 50 to 60 (Fig. 8).

Figure 8
figure 8

An illustrative frequency response over the insertion steps. The vertical lines correspond to the identified mode and its frequency. 5–7 modes were successfully detected in the range 0–2000 Hz.

A.4 Reproducibility Test

The shape similarity of any two curves \(f_{1}(x),\, f_{2}(x)\) was measured by dot product metric defined as:

$$\begin{aligned} \theta = \frac{\big (f_{1},\, f_{2}\big )}{\vert \vert f_{1}\vert \vert \vert \vert f_{2}\vert \vert } \end{aligned}$$
(4)

where \(\big (\cdot , \cdot \big )\) is an inner product defined at \(L^{2}\) function space:

$$\big (f_{1},\, f_{2}\big ) = \int f_{1}f_{2}{\text{d}}x$$
(5)

The denominator represents a norm:

$$\vert \vert f\vert \vert = \sqrt{\big (f, f\big )}$$
(6)

This metric has a range of −1–1. The discrete data was smoothed and represented by b-spline approximation functions (fda package, R-project) (Fig. 9 and Table 5).55

Figure 9
figure 9

The repeated measurement of the bone–implant response for the bone samples; bone #1: 3 runs, bone #2: 10 runs.

Table 5 The similarity metric for model variables (implants #1 and #2).

A.5 Inelastic Bone Deformation

Tests on inelastic bone deformation due to repeated use and the post-fracture stiffness of bone sample #1 (Fig. 10 and Table 6).

Figure 10
figure 10

Reproducibility test on the reinsertion of implant #1 into bone sample #2. The post-fracture stiffness of bone sample #1.

Table 6 Test for the force difference due to inelastic bone deformation: Mann–Whitney U test (\(p^{*}\,<\,0.05\)).

A.6 Material Properties of the Composite Bone

The material from which the model was constructed comprised a composite mixture of short glass-fibres and poly-acrylate resin (outer cortical shell) and solid foam (inner core) (Table 7).

Table 7 Material properties of sawbone.

A.7 Iterative Removing of Irrelevant Features

If the length-scale l is large with respect to the others then the corresponding feature is deemed irrelevant. Such irrelevant features were iteratively removed so as to maintain the optimal level of model performance. The threshold was estimated according to a decrease in model accuracy \({ {f=\{R^{2}, {\text{MSE}}, \sigma _{\text{e}}\}}}\) of more than 5% following the removal of the feature (Fig. 11).

Figure 11
figure 11

Iterative removing of features.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Henyš, P., Čapek, L. Impact Force, Polar Gap and Modal Parameters Predict Acetabular Cup Fixation: A Study on a Composite Bone. Ann Biomed Eng 46, 590–604 (2018). https://doi.org/10.1007/s10439-018-1980-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-018-1980-3

Keywords

  • Pelvis
  • Experimental modal analysis
  • Gaussian process
  • Functional principal component analysis
  • Frequency response function
  • Surrogate model