Skip to main content

Advertisement

Log in

Experimental Study of Thrust Force and Torque for Drilling Cortical Bone

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Excessive drilling forces can result in drill breakage, bone breakthrough, and thermal necrosis during bone drilling process. However, the effect of drilling process parameters, drill geometry parameters, and bone material type on drilling forces have not been fully investigated. Three designs of experiments are introduced separately to study single factor’s effect on drilling forces, identify significant geometry parameters and possible interactions for drilling forces, and formulate direct relationship between drilling forces and process parameters. The results show that thrust force and torque are increased with feed rate, drill diameter or web thickness. The effect of spindle speed, point angle, helix angle, and chisel edge angle on drilling forces is complex. The results also show that the drilling forces are affected by bone type significantly, which are highest for bovine cortical bone, and lowest for Sawbones 3401. The levels of significance of geometry parameters are identified and different for thrust force and torque, which can assist new surgical drill development. Quadratic regression equations obtained by response surface methodology can predict thrust force and torque accurately in a wide range of process parameters, which can be used to control drilling conditions for robot assisted surgeries to realize safe drilling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Accini, F., I. Diaz, and J. J. Gil. Using an admittance algorithm for bone drilling procedures. Computer Methods and Programs in Biomedicine 123:150 – 158, 2016.

    Article  Google Scholar 

  2. Alam, K. Experimental and numerical analysis of conventional and ultrasonically-assisted cutting of bone. Ph.d., Loughborough University, 2009.

  3. Alam, K., A. V. Mitrofanov, and V. V. Silberschmidt. Experimental investigations of forces and torque in conventional and ultrasonically-assisted drilling of cortical bone. Medical Engineering & Physics 33:234–239, 2011.

    Article  CAS  PubMed  Google Scholar 

  4. Alam, K., R. Muhammad, A. Shamsuzzoha, A. AlYahmadi, and N. Ahmed. Quantitative analysis of force and torque in bone drilling. The Journal of Engineering Research 14:39–48, 2017.

    Article  Google Scholar 

  5. Allotta, B., F. Belmonte, L. Bosio, and P. Dario. Study on a mechatronic tool for drilling in the osteosynthesis of long bones: Tool/bone interaction, modeling and experiments. Mechatronics 6:447 – 459, 1996.

    Article  Google Scholar 

  6. Augustin, G., T. Zigman, S. Davila, T. Udilljak, T. Staroveski, D. Brezak, and S. Babic. Cortical bone drilling and thermal osteonecrosis. Clinical Biomechanics 27:313–325, 2012.

    Article  Google Scholar 

  7. Aziz, M. H., M. A. Ayub, and R. Jaafar. Force control algorithm for detection of break-through bone drilling. Journal of Mechanical Engineering 9:1–4, 2012.

    Google Scholar 

  8. Aziz, M. H., M. A. Ayub, and R. Jaafar. Real-time algorithm for detection of breakthrough bone drilling. Procedia Engineering 41:352–359, 2012.

    Article  Google Scholar 

  9. Basiaga, M., Z. Paszenda, J. Szewczenko, and M. Kaczmarek. Numerical and experimental analyses of drills used in osteosynthesis. Acta Bioeng Biomech 13:29–36, 2011.

    PubMed  Google Scholar 

  10. Boiadjiev, T., G. Boiadjiev, K. Delchev, K. Zagurski, and R. Kastelov. Far cortex automatic detection aimed for partial or full bone drilling by a robot system in orthopaedic surgery. Biotechnology & Biotechnological Equipment 31:200–205, 2017.

    Article  Google Scholar 

  11. Cook, N. H. Manufacturing Analysis, Reading, Mass. Addison-Wesley, Boston, 1966.

    Google Scholar 

  12. Cseke, A. and R. Heinemann. The effects of cutting parameters on cutting forces and heat generation when drilling animal bone and biomechanical test materials. Medical Engineering & Physics 51:24 – 30, 2018.

    Article  PubMed  Google Scholar 

  13. Currey, J. D. The Mechanical Adaptations of Bones, Princeton University Press,NY 1984.

    Book  Google Scholar 

  14. Daz, I., J. J. Gil, and M. Louredo. Bone drilling methodology and tool based on position measurements. Computer Methods and Programs in Biomedicine 112:284–292, 2013.

    Article  Google Scholar 

  15. Eriksson, A. R. and T. Albrektsson. Temperature threshold levels for heat-induced bone tissue injury: A vital-microscopic study in the rabbit. The Journal of Prosthetic Dentistry 50:101–107, 1983.

    Article  CAS  PubMed  Google Scholar 

  16. Karalis, T. and P. Galanos. Research on the mechanical impedance of human bone by a drilling test. Journal of Biomechanics 15:561–581, 1982.

    Article  CAS  PubMed  Google Scholar 

  17. Karmani, S. The thermal properties of bone and the effects of surgical intervention. Current Orthopaedics 20:52 – 58, 2006.

    Article  Google Scholar 

  18. Langella, A., L. Nele, and A. Maio. A torque and thrust prediction model for drilling of composite materials. Composites Part A: Applied Science and Manufacturing 36:83–93, 2005.

    Article  Google Scholar 

  19. Lee, J., C. L. Chavez, and J. Park. Parameters affecting mechanical and thermal responses in bone drilling: a review. J. Biomech., 2018.

  20. Lee, J., B. A. Gozen, and O. B. Ozdoganlar. Modeling and experimentation of bone drilling forces. Journal of Biomechanics 45:1076–1083, 2012.

    Article  PubMed  Google Scholar 

  21. Lee, W.-Y. and C.-L. Shih. Control and breakthrough detection of a three-axis robotic bone drilling system. Mechatronics 16:73–84, 2006.

    Article  CAS  Google Scholar 

  22. Louredo, M., I. Daz, and J. J. Gil. Dribon: A mechatronic bone drilling tool. Mechatronics 22:1060–1066, 2012.

    Article  Google Scholar 

  23. Lughmani, W. A., K. Bouazza-Marouf, and I. Ashcroft. Finite element modeling and experimentation of bone drilling forces. Journal of Physics: Conference Series 451:012034, 2013.

    Google Scholar 

  24. Lughmani, W. A., K. Bouazza-Marouf, and I. Ashcroft. Drilling in cortical bone: a finite element model and experimental investigations. Journal of the Mechanical Behavior of Biomedical Materials 42:32 – 42, 2015.

    Article  PubMed  Google Scholar 

  25. Lundskog, J. Heat and bone tissue: an experimental investigation of the thermal properties of bone and threshold levels for thermal injury. Scandinavian journal of plastic and reconstructive surgery 9:1–80, 1972.

    CAS  PubMed  Google Scholar 

  26. Macavelia, T., M. Salahi, M. Olsen, M. Crookshank, E. H. Schemitsch, A. Ghasempoor, F. Janabi-Sharifi, and R. Zdero. Biomechanical measurements of surgical drilling force and torque in human versus artificial femurs. Journal of Biomechanical Engineering 134:124503, 2012.

    Article  PubMed  Google Scholar 

  27. Ong, F. and K. Bouazza-Marouf. The detection of drill bit break-through for the enhancement of safety in mechatronic assisted orthopaedic drilling. Mechatronics 9:565 – 588, 1999.

    Article  Google Scholar 

  28. Ong, F. R. and K. Bouazza-Marouf. Drilling of bone: A robust automatic method for the detection of drill bit break-through. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine 212:209–221, 1998.

    Article  CAS  Google Scholar 

  29. Pichler, W., P. Mazzurana, H. Clement, S. Grechenig, R. Mauschitz, and W. Grechenig. Frequency of instrument breakage during orthopaedic procedures and its effects on patients. The Journal of Bone & Joint Surgery 90:2652–2654, 2008.

    Article  PubMed  Google Scholar 

  30. Powers, M. J. The mechanics of bone drilling: Experiment and finite element predictions. Ph.d., University of Calgary, 2006.

  31. Price, M., S. Molloy, M. Solan, A. Sutton, and D. Ricketts. The rate of instrument breakage during orthopaedic procedures. International Orthopaedics 26:185–187, 2002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Reilly, D. T. and A. H. Burstein. The mechanical properties of cortical bone. JBJS 56:1001–1022, 1974.

    Article  CAS  Google Scholar 

  33. Reilly, D. T. and A. H. Burstein. The elastic and ultimate properties of compact bone tissue. Journal of Biomechanics 8:393 – 405, 1975.

    Article  CAS  PubMed  Google Scholar 

  34. Sang, H., R. Monfaredi, E. Wilson, H. Fooladi, D. Preciado, and K. Cleary. A new surgical drill instrument with force sensing and force feedback for robotically assisted otologic surgery. Journal of Medical Devices 11:031009; 2017.

    Article  Google Scholar 

  35. Singh, G., V. Jain, and D. Gupta. Comparative study for surface topography of bone drilling using conventional drilling and loose abrasive machining. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine 229:225–231, 2015. PMID: 25833998.

    Article  Google Scholar 

  36. Soriano, J., A. Garay, P. Aristimuño, and P. J. Arrazola. Study and improvement of surgical drill bit geometry for implant site preparation. The International Journal of Advanced Manufacturing Technology 74:615–627, 2014.

    Article  Google Scholar 

  37. Sui, J. and N. Sugita. Optimization of drill bits for bone drilling procedure. In: 13th International Manufacturing Science and Engineering Conference, p. V001T05A001, 2018.

  38. Sui, J., N. Sugita, K. Ishii, K. Harada, and M. Mitsuishi. Mechanistic modeling of bone-drilling process with experimental validation. Journal of Materials Processing Technology 214:1018–1026, 2014.

    Article  Google Scholar 

  39. Sui, J., N. Sugita, and M. Mitsuishi. Thermal modeling of temperature rise for bone drilling with experimental validation. Journal of Manufacturing Science and Engineering 137:061008, 2015.

    Article  Google Scholar 

  40. Tuijthof, G. J. M., C. Fruhwirt, and C. Kment. Influence of tool geometry on drilling performance of cortical and trabecular bone. Medical Engineering & Physics 35:1165–1172, 2013.

    Article  CAS  PubMed  Google Scholar 

  41. Udiljak, T., D. Ciglar, and S. Skoric. Investigation into bone drilling and thermal bone necrosis. Advances in Production Engineering& Management 2:103–12, 2007.

    Google Scholar 

  42. Wang, Y., M. Cao, Y. Zhao, G. Zhou, W. Liu, and D. Li. Experimental investigations on microcracks in vibrational and conventional drilling of cortical bone. Journal of Nanomaterials 2013:5, 2013.

    Google Scholar 

Download references

Acknowledgments

This research work was sponsored by the Japan Ministry of Internal Affairs and Communications, Strategic Information and Communication R&D Promotion Programme [Grant No. 121803005], start-up funding of the 100 Young Talents Programme of Guangdong University of Technology [Grant No. 220413188], National Natural Science Foundation of China [Grant No. 51805091], and Natural Science Foundation of Guangdong Province [Grant No. 2018A030313713].

Conflict of interest

The authors declare that there is no conflict of interest associated with the presented work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianbo Sui.

Additional information

Associate Editor Sean S. Kohles oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sui, J., Sugita, N. Experimental Study of Thrust Force and Torque for Drilling Cortical Bone. Ann Biomed Eng 47, 802–812 (2019). https://doi.org/10.1007/s10439-018-02196-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-018-02196-8

Keywords

Navigation