Skip to main content
Log in

High Speed Pneumatic Stepper Motor for MRI Applications

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Presented in this paper is an exploration into the efficacy of a plastic, four-cylinder piston pneumatic motor designed for driving medical instruments inside magnetic resonance imaging (MRI) systems. Because of the increasing use of MRI for diagnostic and interventional purposes and the benefits that could be realized by operating with real-time MR image guidance, there exists a significant need for MRI compliant surgical devices. Some type of actuation mechanism is necessary to drive such devices. The motor can be controlled to operate in a “step” type motion by using pneumatic valves to sequentially apply air pressure to push the piston surfaces, meaning the motor is metal-free and does not use electricity. The stepwise nature of this piston stepper motor is ideal for the accurate, controlled movements required for MRI-guided interventions. The motor was geared down by a gearbox to increase torque. Performance indices determined include output torque and achievable rotational velocity with respect to factors such as air pressure and load conditions. The stepper motor achieved speeds of approximately 2000 rpm, and maximum output torques of approximately 19 N mm. The motor represents a high speed pneumatic stepper motor design capable of actuating devices in MR environments without affecting image quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. American Society for Testing and Materials (ASTM) International. Designation: F2503-05. Standard Practice for Marking Medical Devices and Other Items for Safety in the Magnetic Resonance Environment. West Conshohocken, PA: ASTM International, 2005.

    Google Scholar 

  2. Bergeles, C., P. Vartholomeos, L. Qin, and P. E. Dupont. Closed-loop commutation control of an MRI-powered robot actuator. In: 2013 IEEE International Conference on Robotics and Automation (ICRA), 2013. IEEE, 2013, pp. 698–703.

  3. Briggs, R. W., et al. A pneumatic vibrotactile stimulation device for fMRI. Magn. Reson. Med. 51(3):640–643, 2004.

    Article  PubMed  Google Scholar 

  4. Chen, Y., J. Ge, K.-W. Kwok, K. R. Nilsson, M. Fok, and T. T. Zion. MRI-conditional catheter sensor for contact force and temperature monitoring during cardiac electrophysiological procedures. J. Cardiovasc. Magn. Reson. 16(Suppl 1):P150, 2014.

    Article  PubMed Central  Google Scholar 

  5. Chen, Y., K. W. Kwok, and Z. T. H. Tse. An MR-conditional high-torque pneumatic stepper motor for MRI-guided and robot-assisted intervention. Ann. Biomed. Eng. 42(9):1823–1833, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Chen, Y., C. D. Mershon, and Z. T. H. Tse. A 10-mm MR-conditional unidirectional pneumatic stepper motor. IEEE/ASME Trans. Mechatron. 20:1–7, 2014.

    Google Scholar 

  7. Chinzei, K., R. Kikinis, and F. A. Jolesz. MR compatibility of mechatronic devices: design criteria. In: Medical Image Computing and Computer-Assisted Intervention, MICCAI’99, Proceedings, January 1999, vol. 1679, pp. 1020–1030.

  8. Fischer, G. S., S. P. DiMaio, I. Iordachita, and G. Fichtinger. Development of a robotic assistant for needle-based transperineal prostate interventions in MRI. In: MICCAI, November 2007, vol. 4791, pp. 425–433.

  9. Fischer, G. S., et al. MRI-compatible pneumatic robot for transperineal prostate needle placement. IEEE/ASME Trans. Mechatron. 13(3):295–305, 2008.

    Article  Google Scholar 

  10. Gassert, R., A. Yamamoto, D. Chapuis, L. Dovat, H. Bleuler, and E. Burdet. Actuation methods for applications in MR environments. Concepts Magn. Reson. B 29B(4):191–209, 2006.

    Article  Google Scholar 

  11. Groenhuis, V. et al. Stormram 2: a MRI-compatible robotic system for breast biopsy. In: Hamlyn Symposium on Medical Robotics, 2016, pp. 52–53.

  12. Hall, W. A., and C. L. Truwit. Intraoperative MR-guided neurosurgery. J. Magn. Reson. Imaging 27(2):368–375, 2008.

    Article  PubMed  Google Scholar 

  13. Han, B. K., M. D. Schnall, S. G. Orel, and M. Rosen. Outcome of MRI-guided breast biopsy. Am. J. Roentgenol. 191(6):1798–1804, 2008.

    Article  Google Scholar 

  14. Hetts, S., et al. Endovascular catheter for magnetic navigation under MR imaging guidance: evaluation of safety in vivo at 1.5 T. Am. J. Neuroradiol. 34(11):2083–2091, 2013.

    Article  CAS  PubMed  Google Scholar 

  15. Kwok, K.-W., et al. MRI-based visual and haptic catheter feedback: simulating a novel system’s contribution to efficient and safe MRI-guided cardiac electrophysiology procedures. J. Cardiovasc. Magn. Reson. 16(Suppl 1):O50, 2014.

    Article  PubMed Central  Google Scholar 

  16. Liberman, L., N. Bracero, E. Morris, C. Thornton, and D. D. Dershaw. MRI-guided 9-gauge vacuum-assisted breast biopsy: initial clinical experience. Am. J. Roentgenol. 185(1):183–193, 2005.

    Article  Google Scholar 

  17. Masamune, K., et al. Development of an MRI-compatible needle insertion manipulator for stereotactic neurosurgery. Comput. Aided Surg. 1(4):242–248, 1995.

    Article  CAS  Google Scholar 

  18. McDannold, N., G. Clement, P. Black, F. Jolesz, and K. Hynynen. Transcranial MRI-guided focused ultrasound surgery of brain tumors: initial findings in three patients. Neurosurgery 66(2):323, 2010.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Muntener, M., et al. Magnetic resonance imaging compatible robotic system for fully automated brachytherapy seed placement. Urology 68(6):1313–1317, 2006.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Navkar, N. V., Z. Deng, D. J. Shah, and N. V. Tsekos. A Framework for integrating real-time MRI with robot control: application to simulated transapical cardiac interventions. IEEE Trans. Biomed. Eng. 60(4):1023–1033, 2013.

    Article  PubMed  Google Scholar 

  21. Okamura, A. M., C. Simone, and M. D. O’Leary. Force modeling for needle insertion into soft tissue. IEEE Trans. Biomed. Eng. 51(10):1707–1716, 2004.

    Article  PubMed  Google Scholar 

  22. Pondman, K. M., et al. MR-guided biopsy of the prostate: an overview of techniques and a systematic review. Eur. Urol. 54(3):517–527, 2008.

    Article  PubMed  Google Scholar 

  23. Sajima, H., H. Kamiuchi, K. Kuwana, T. Dohi, and K. Masamune. MR-safe pneumatic rotation stepping actuator. J. Robot. Mechatron. 24(5):820–827, 2012.

    Article  Google Scholar 

  24. Secoli, R., et al. A low-cost, high-field-strength magnetic resonance imaging-compatible actuator. J. Eng. Med. 229(6):215–224, 2015.

    Article  Google Scholar 

  25. Song, S. E., N. Hata, I. Iordachita, G. Fichtinger, C. Tempany, and J. Tokuda. A workspace‐orientated needle‐guiding robot for 3T MRI‐guided transperineal prostate intervention: evaluation of in‐bore workspace and MRI compatibility. Int. J. Med. Robot. Comput. Assist. Surg. 2012. https://doi.org/10.1002/rcs.1430.

    Article  Google Scholar 

  26. Stoianovici, D., A. Patriciu, D. Petrisor, D. Mazilu, and L. Kavoussi. A new type of motor: pneumatic step motor. IEEE/ASME Trans. Mechatron. 12(1):98–106, 2007.

    Article  Google Scholar 

  27. Tse, Z. T. H., H. Elhawary, M. Rea, B. Davies, I. Young, and M. Lamperth. Haptic needle unit for MR-guided biopsy and its control. IEEE/ASME Trans. Mechatron. 17(1):183–187, 2012.

    Article  Google Scholar 

  28. Vartholomeos, P., C. Bergeles, L. Qin, and P. E. Dupont. An MRI-powered and controlled actuator technology for tetherless robotic interventions. Int. J. Robot. Res. 32(13):1536–1552, 2013.

    Article  Google Scholar 

  29. Wang, Y., H. Su, K. Harrington, and G. Fischer. Sliding mode control of piezoelectric valve regulated pneumatic actuator for MRI-compatible robotic intervention. In: ASME Dynamic Systems and Control Conference—DSCC, 2010.

  30. Zappe, A. C., T. Maucher, K. Meier, and C. Scheiber. Evaluation of a pneumatically driven tactile stimulator device for vision substitution during fMRI studies. Magn. Reson. Med. 51(4):828–834, 2004.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported in part by the NSF I-Corps Team Grant (1617340), the UGA-AU Inter-Institutional Seed Funding, the UGA Clinical and Translational Research Unit Seed Grant, the PHS Grant UL1TR000454 from the Clinical and Translational Science Award Program, and the NIH National Center for Advancing Translational Sciences, the NIH Center for Interventional Oncology and the NIH Intramural Research Program, Z01 Grant # 1ZID BC011242 and CL040015. Also, the authors would like to acknowledge support from the NIH Clinical Center, National Institute of Biomedical Imaging and Bioengineering, and National Cancer Institute Center for Cancer Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zion Tsz Ho Tse.

Additional information

Associate Editor Xiaoxiang Zheng oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boland, B.L., Xu, S., Wood, B. et al. High Speed Pneumatic Stepper Motor for MRI Applications. Ann Biomed Eng 47, 826–835 (2019). https://doi.org/10.1007/s10439-018-02174-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-018-02174-0

Keywords

Navigation