Skip to main content
Log in

Thermoelectric Heat Patch for Clinical and Self-Management: Melanoma Excision Wound Care

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Thermotherapy is considered to have potential beneficial effects when applied to wounds. Of particular relevance to this research are wounds that have dropped in temperature due to regional anaesthesia. This study is aimed at developing a normothermic system comprising of a heat patch controlled by external hardware. The study is divided into three parts: (i) the analyses of the skin temperature that form the foundation of the system; (ii) the development of an efficient wearable heat patch incorporating thermoelectric elements to electrical and thermal conductive textiles; and (iii) the hardware development to control the current flow to the thermoelectric elements thus managing the temperature of the heat patch and conserving current. It was observed that a distance of 3 cm between the thermoelectric elements provides ideal heat distribution relative to the surface area. The system allowed for an 80% reduction in current, while maintaining the temperature of the heat patch at the required thermophysiological skin temperature. Future studies will include development of a temperature sensor identifying the real-time temperature of the wound; and circuitry for switching the polarity of the thermoelectric elements. The cooling capabilities of the thermoelectric elements can be applied to wounds that have increased in temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Allen, T. K., and A. S. Habib. Inadvertent perioperative hypothermia induced by spinal anesthesia for cesarean delivery might be more significant than we think: are we doing enough to warm our parturients? Anesth. Analg. 126(1):7–9, 2018.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Allen, M. W., and D. J. Jacofsky. Normothermia in arthroplasty. J. Arthroplast. 32(7):2307–2314, 2017.

    Article  Google Scholar 

  3. Altura, D. Insulator–conductor device for maintaining a wound near normal body temperature. US Patent No. US 6,613,953 B1, 2003.

  4. Alvarez, O. M., R. S. Rogers, J. G. Booker, and M. Patel. Effect of noncontact normothermic wound therapy on the healing of neuropathic (diabetic) foot ulcers: an interim analysis of 20 patients. J. Foot Ankle Surg. 42(1):30–35, 2003.

    Article  PubMed  Google Scholar 

  5. Bach, A. J. E., I. B. Stewart, A. E. Disher, and J. T. Costello. A comparison between conductive and infrared devices for measuring mean skin temperature at rest, during exercise in the heat, and recovery. PLoS ONE 10(2):e0117907, 2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Banan, B., and W. Chapman. Promise of normothermia. Curr. Transplant. Rep. 4(1):42–51, 2017.

    Article  Google Scholar 

  7. Buggy, D. J., and A. W. Crossley. Thermoregulation, mild perioperative hypothermia and postanaesthetic shivering. Br. J. Anaesth. 84(5):615–628, 2000.

    Article  CAS  PubMed  Google Scholar 

  8. Capon, A., and S. Mordon. Can thermal lasers promote skin wound healing? Am. J. Clin. Dermatol. 4(1):1–12, 2003.

    Article  PubMed  Google Scholar 

  9. Chanmugam, A., D. Langemo, K. Thomason, J. Haan, E. A. Altenburger, A. Tippet, L. Henderson, and T. A. Zortman. Relative temperature maximum in wound infection and inflammation as compared with a control subject using long-wave infrared thermography. Adv. Skin Wound Care 30(9):406–414, 2017.

    Article  PubMed  Google Scholar 

  10. Choi, J. K., K. Miki, S. Sagawa, and K. Shiraki. Evaluation of mean skin temperature formulas by infrared thermography. Int. J. Biometeorol. 41:68–75, 1997.

    Article  CAS  PubMed  Google Scholar 

  11. Ferreira, J. J. A., L. C. S. Mendonca, L. A. O. Nunes, A. C. C. A. Filho, J. R. Rebelatto, and T. F. Salvini. Exercise-associated thermographic changes in young and elderly subjects. Ann. Biomed. Eng. 36(8):1420–1427, 2008.

    Article  PubMed  Google Scholar 

  12. Flouris, A. D., and S. S. Cheung. Design and control optimization of microclimate liquid cooling systems underneath protective clothing. Ann. Biomed. Eng. 34(3):359–372, 2006.

    Article  CAS  PubMed  Google Scholar 

  13. Gurtner, G. C., S. Werner, Y. Barrandon, and M. T. Longaker. Wound repair and regeneration. Nature 453:314–321, 2008.

    Article  CAS  PubMed  Google Scholar 

  14. Jain, R. K. Temperature distributions in normal and neoplastic tissues during normothermia and hyperthermia. Ann. N. Y. Acad. Sci. 335:48–66, 1980.

    Article  CAS  PubMed  Google Scholar 

  15. Koek, M. B. G., T. E. M. Hopmans, L. C. Wille, S. E. Geerlings, M. C. Vos, B. H. B. van Benthem, and S. C. Greeff. Adhering to a national surgical care bundle reduces the risk of surgical site infections. PLoS ONE 12(9):e0184200, 2017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kurz, A. Thermal care in the perioperative period. Best Pract. Res. Clin. Anaesthesiol. 22(1):39–62, 2008.

    Article  PubMed  Google Scholar 

  17. Kurz, A., D. I. Sessler, and R. Lenhardt. Perioperative normothermia to reduce the incidence of surgical-wound infection and shorten hospitalization. Study of Wound Infection and Temperature Group. N. Engl. J. Med. 334(19):1209–1215, 1996.

    Article  CAS  PubMed  Google Scholar 

  18. Leijtens, B., M. Koeter, K. Kremers, and S. Koeter. High incidence of postoperative hypothermia in total knee and total hip arthroplasty: a prospective observational study. J. Arthroplast. 28(6):895–898, 2013.

    Article  Google Scholar 

  19. Lin, Z. P., and S. Deng. A study on the thermal comfort in sleeping environments in the subtropics—developing a thermal comfort model for sleeping environments. Build. Environ. 43(1):70–81, 2008.

    Article  Google Scholar 

  20. Matusiak, M. Investigation of the thermal insulationp of multilayer textiles. Fibers Text. East. Eur. 14(5):98–102, 2006.

    CAS  Google Scholar 

  21. Parish, O. L., N. Balachandran, and T. Quisenberry. Method and system for thermal and compression therapy relative to the prevention of deep vein thrombosis. WIPO Patent No. WO2007120639A3, 2008.

  22. Ramos, G. V., C. M. Pinheiro, S. P. Messa, G. B. Delfino, R. C. Marqueti, T. F. Salvini, and J. L. Durigan. Cryotherapy reduces inflammatory response without altering muscle regeneration process and extracellular matrix remodeling of rat muscle. Sci. Rep. 6:18525, 2016.

    Article  CAS  Google Scholar 

  23. Rivera, A. E., and J. M. Spencer. Clinical aspects of full-thickness wound healing. Clin. Dermatol. 25(1):39–48, 2007.

    Article  PubMed  Google Scholar 

  24. Romanovsky, A. A. Skin temperature: its role in thermoregulation. Acta Physiol. 210:498–507, 2014.

    Article  CAS  Google Scholar 

  25. Sarver, D. C., K. B. Sugg, N. P. Disser, E. R. S. Enselman, T. M. Awan, and C. L. Mendias. Local cryotherapy minimally impacts the metabolome and transcriptome of human skeletal muscle. Sci. Rep. 7:2423, 2017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Singh, S., A. Young, and C. E. McNaught. The physiology of wound healing. Surgery 35(9):473–477, 2017.

    Google Scholar 

  27. Teodorczyk, J. E., J. H. Heijmans, W. van Mook, D. Bergmans, and P. Roekaerts. Perioperative normothermia to reduce the incidence of surgical-wound infection and shorten hospitalization. Study of Wound Infection and Temperature Group. Open J. Anesthesiol. 2(3):65–69, 2012.

    Article  Google Scholar 

  28. Thomas, R. T., M. R. Diebold, and L. M. Eggemeyer. A controlled, randomized, comparative study of a radiant heat bandage on the healing of stage 3–4 pressure ulcers: a pilot study. J. Am. Med. Dir. Assoc. 6(1):46–49, 2005.

    Article  PubMed  Google Scholar 

  29. Tyler, C. J. The effect of skin thermistor fixation method on weighted mean skin temperature. Physiol. Meas. 32:1541–1547, 2011.

    Article  PubMed  Google Scholar 

  30. Ud-Din, S., and A. Bayat. Non-invasive objective devices for monitoring the inflammatory, proliferative and remodelling phases of cutaneous wound healing and skin scarring. Exp. Dermatol. 25:579–585, 2016.

    Article  CAS  PubMed  Google Scholar 

  31. Whitney, J. D., G. Salvadalena, L. Higa, and M. Mich. Treatment of pressure ulcers with noncontact normothermic wound therapy: healing and warming effects. J. Wound Ostomy Cont. Nurs. 28(5):244–252, 2001.

    CAS  Google Scholar 

  32. Zaki, E., A. Salma, and S. Omar. Treatment of auricular keloids by triple combination therapy: surgical excision, platelet-rich plasma, and cryosurgery. J. Cosmet. Dermatol. 17:502–510, 2018.

    Article  Google Scholar 

  33. Zhang, X. Smart Fibres, Fabrics and Clothing, Vol. 1. Cambridge: Woodhead Publishing Limited, pp. 34–57, 2001.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irini Logothetis.

Additional information

Associate Editor Eiji Tanaka oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Logothetis, I., Gkoutzeli, D., Kagkas, D. et al. Thermoelectric Heat Patch for Clinical and Self-Management: Melanoma Excision Wound Care. Ann Biomed Eng 47, 537–548 (2019). https://doi.org/10.1007/s10439-018-02172-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-018-02172-2

Keywords

Navigation