Reduction of Pressure Gradient and Turbulence Using Vortex Generators in Prosthetic Heart Valves

Abstract

Blood damage and platelet activation are inherent problems with present day bi-leaflet mechanical heart valve designs. Passive flow control through different arrangements of vortex generators (VG) as means of improving pressure gradients and reducing turbulence are investigated. Rectangular VG arrays were mounted on the downstream surfaces of a 23 mm 3D printed mechanical valve. The effect of VGs on the resulting flow structures were assessed under pulsatile physiological flow conditions where high resolution particle image velocimetry measurement was performed. The co-rotating VGs showed lower Reynolds shear stresses and improved pressure gradients (PG) compared with the counter-rotating ones and the no-VG control one (that showed higher turbulence). RSS was found 38.13 ± 0.89, 12.95 ± 0.32, 15.75 ± 0.71, 24.54 ± 0.84 and 16.33 ± 0.58 Pa for the control, co-rotating VGs, 8 counter-rotating VGs, 4 far-spaced VGs and 4 closely-spaced VGs, respectively. PG of 10.45 ± 0.94 mmHg was obtained with co-rotating VGs and the difference was significant compared with the other configurations (control 14.88 ± 0.4 mmHg; 8 counter-rotating VGs 13.76 ± 0.51 mmHg; 4 far-spaced VGs 13.84 ± 0.09 mmHg; and 4 closely-spaced VGs 15.37 ± 0.16 mmHg). Co-rotating VGs for this application induce a more delayed flow separation and a more homogenized and streamlined transition of flow compared with the counter-rotating VGs. Passive flow control techniques deployed on BHMVs is potentially beneficial as significant control of flow at small length scales without inducing large-scale design modifications of the valve.

This is a preview of subscription content, log in to check access.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Abbreviations

VG:

Vortex generators

PG:

Pressure gradient

RSS:

Reynolds shear stress

PIV:

Particle image velocimetry

EOA:

Effective orifice area

BMHV:

Bi-leaflet mechanical heart valve

References

  1. 1.

    Antiga, L., and D. A. Steinman. Rethinking turbulence in blood. Biorheology 46(2):77–81, 2009.

    PubMed  Google Scholar 

  2. 2.

    Baudet, E. M., et al. A 5 1/2 year experience with the St. Jude Medical cardiac valve prosthesis. Early and late results of 737 valve replacements in 671 patients. J. Thorac. Cardiovasc. Surg. 90(1):137–144, 1985.

    CAS  PubMed  Google Scholar 

  3. 3.

    Bradbury, L., and A. Khadem. The distortion of a jet by tabs. J. Fluid Mech. 70(4):801–813, 1975.

    Article  Google Scholar 

  4. 4.

    Cannegieter, S. C., et al. Optimal oral anticoagulant therapy in patients with mechanical heart valves. N. Engl. J. Med. 333(1):11–17, 1995.

    CAS  Article  Google Scholar 

  5. 5.

    Chandran, K. B., S. E. Rittgers, and A. P. Yoganathan. Biofluid Mechanics: The Human Circulation. Boca Raton: CRC Press, 2006.

    Google Scholar 

  6. 6.

    Chang, B., et al. Long-term results with St. Jude Medical and CarboMedics prosthetic heart valves. J. Heart Valve Dis. 10(2):185–194, 2001; discussion 195.

  7. 7.

    Dale, J., and E. Myhre. Intravascular hemolysis in the late course of aortic valve replacement. Relation to valve type, size, and function. Am. Heart J. 96(1):24–30, 1978.

    CAS  Article  Google Scholar 

  8. 8.

    Dasi, L. P., et al. Passive flow control of bileaflet mechanical heart valve leakage flow. J. Biomech. 41(6):1166–1173, 2008.

    Article  Google Scholar 

  9. 9.

    Dasi, L. P., et al. Fluid mechanics of artificial heart valves. Clin. Exp. Pharmacol. Physiol. 36(2):225–237, 2009.

    CAS  Article  Google Scholar 

  10. 10.

    David, T., and C. Hsu. The integrated design of mechanical bi-leaflet prosthetic heart valves. Med. Eng. Phys. 18(6):452–462, 1996.

    CAS  Article  Google Scholar 

  11. 11.

    Dovgal, A., V. Kozlov, and A. Michalke. Laminar boundary layer separation: instability and associated phenomena. Prog. Aerosp. Sci. 30(1):61–94, 1994.

    Article  Google Scholar 

  12. 12.

    Giersiepen, M., et al. Estimation of shear stress-related blood damage in heart valve prostheses-in vitro comparison of 25 aortic valves. Int. J. Artif. Organs 13(5):300–306, 1990.

    CAS  Article  Google Scholar 

  13. 13.

    Godard, G., and M. Stanislas. Control of a decelerating boundary layer. Part 1: optimization of passive vortex generators. Aerosp. Sci. Technol. 10(3):181–191, 2006.

    Article  Google Scholar 

  14. 14.

    Govindarajan, V., et al. Impact of design parameters on bi-leaflet mechanical heart valve flow dynamics. J. Heart Valve Dis. 18(5):535, 2009.

    PubMed  PubMed Central  Google Scholar 

  15. 15.

    Harker, L. A., and S. J. Slichter. Studies of platelet and fibrinogen kinetics in patients with prosthetic heart valves. N. Engl. J. Med. 283(24):1302–1305, 1970.

    CAS  Article  Google Scholar 

  16. 16.

    Hatoum, H., and L. P. Dasi. Sinus hemodynamics in representative stenotic native bicuspid and tricuspid aortic valves: an in-vitro study. Fluids 3(3):56, 2018.

    Article  Google Scholar 

  17. 17.

    Hatoum, H., F. Heim, and L. P. Dasi. Stented valve dynamic behavior induced by polyester fiber leaflet material in transcatheter aortic valve devices. J. Mech. Behav. Biomed. Mater. 86:232–239, 2018.

    CAS  Article  Google Scholar 

  18. 18.

    Hatoum, H., B. L. Moore, and L. P. Dasi. On the significance of systolic flow waveform on aortic valve energy loss. Ann. Biomed. Eng. 2018. https://doi.org/10.1007/s10439-018-2102-y.

    Article  PubMed  Google Scholar 

  19. 19.

    Hatoum, H., et al. Aortic sinus flow stasis likely in valve-in-valve transcatheter aortic valve implantation. J. Thorac. Cardiovasc. Surg. 154(1):32e1–43e1, 2017.

    Article  Google Scholar 

  20. 20.

    Hatoum, H., et al. An in-vitro evaluation of turbulence after transcatheter aortic valve implantation. J. Thorac. Cardiovasc. Surg. 2018. https://doi.org/10.1016/j.jtcvs.2018.05.042.

    Article  PubMed  Google Scholar 

  21. 21.

    Hatoum, H., et al. Impact of patient morphologies on sinus flow stasis in transcatheter aortic valve replacement: an in vitro study. J. Thorac. Cardiovasc. Surg. 2018. https://doi.org/10.1016/j.jtcvs.2018.05.086.

    Article  PubMed  Google Scholar 

  22. 22.

    Hatoum, H., et al. Implantation depth and rotational orientation effect on valve-in-valve hemodynamics and sinus flow. Ann. Thorac. Surg. 106(1):70–78, 2018.

    Article  Google Scholar 

  23. 23.

    Hatoum, H., et al. Effect of severe bioprosthetic valve tissue ingrowth and inflow calcification on valve-in-valve performance. J. Biomech. 74:171–179, 2018.

    Article  Google Scholar 

  24. 24.

    Hatoum, H., et al. Sinus hemodynamics variation with tilted transcatheter aortic valve deployments. Ann. Biomed. Eng. 2018. https://doi.org/10.1007/s10439-018-02120-0.

    Article  PubMed  Google Scholar 

  25. 25.

    Hund, S. J., J. F. Antaki, and M. Massoudi. On the representation of turbulent stresses for computing blood damage. Int. J. Eng. Sci. 48(11):1325–1331, 2010.

    Article  Google Scholar 

  26. 26.

    Hung, T., et al. Shear-induced aggregation and lysis of platelets. ASAIO J. 22(1):285–290, 1976.

    CAS  Google Scholar 

  27. 27.

    Ibrahim, M., et al. The St. Jude Medical prosthesis: a thirteen-year experience. J. Thorac. Cardiovasc. Surg. 108(2):221–230, 1994.

    CAS  PubMed  Google Scholar 

  28. 28.

    Kameneva, M. V., et al. Effects of turbulent stresses upon mechanical hemolysis: experimental and computational analysis. ASAIO J. 50(5):418–423, 2004.

    Article  Google Scholar 

  29. 29.

    Khalili, F., P. Gamage, and H.A. Mansy. Hemodynamics of a bileaflet mechanical heart valve with different levels of dysfunction. arXiv preprint. arXiv:1711.11153, 2017.

  30. 30.

    Langan, K. J., and J. J. Samuels. Experimental investigation of maneuver performance enhancements on an advanced fighter/attack aircraft. In: AIAA 33rd Aerospace Sciences Meeting, Reno, NV, 1995.

  31. 31.

    Lin, J. Control of turbulent boundary-layer separation using micro-vortex generators. In: 30th Fluid Dynamics Conference, 1999.

  32. 32.

    Lin, J. C. Review of research on low-profile vortex generators to control boundary-layer separation. Prog. Aerosp. Sci. 38(4–5):389–420, 2002.

    Article  Google Scholar 

  33. 33.

    Masters, R., et al. Comparative results with the St. Jude Medical and Medtronic Hall mechanical valves. J. Thorac. Cardiovasc. Surg. 110(3):663–671, 1995.

    CAS  Article  Google Scholar 

  34. 34.

    Murphy, D. W., et al. Reduction of procoagulant potential of b-datum leakage jet flow in bileaflet mechanical heart valves via application of vortex generator arrays. J. Biomech. Eng. 132(7):071011, 2010.

    Article  Google Scholar 

  35. 35.

    Poller, L., et al. Managing oral anticoagulant therapy. Chest 119:22S–38S, 2001.

    Article  Google Scholar 

  36. 36.

    Quinlan, N. J., and P. N. Dooley. Models of flow-induced loading on blood cells in laminar and turbulent flow, with application to cardiovascular device flow. Ann. Biomed. Eng. 35(8):1347–1356, 2007.

    Article  Google Scholar 

  37. 37.

    Ramstack, J., L. Zuckerman, and L. Mockros. Shear-induced activation of platelets. J. Biomech. 12(2):113–125, 1979.

    CAS  Article  Google Scholar 

  38. 38.

    Simpson, R. L. Turbulent boundary-layer separation. Annu. Rev. Fluid Mech. 21(1):205–232, 1989.

    Article  Google Scholar 

  39. 39.

    Vandenmeer, F., et al. (1993) Bleeding complications in patients treated with oral anticoagulants in a routine situation. In: Thrombosis and Haemostasis. Stuttgart: FK Schattauer Verlag Gmbh.

  40. 40.

    Vongpatanasin, W., L. D. Hillis, and R. A. Lange. Prosthetic heart valves. N. Engl. J. Med. 335(6):407–416, 1996.

    CAS  Article  Google Scholar 

  41. 41.

    Williams, A. Release of serotonin from human platelets by acoustic microstreaming. J. Acoust. Soc. Am. 56(5):1640–1643, 1974.

    CAS  Article  Google Scholar 

  42. 42.

    Yin, W., et al. Flow-induced platelet activation in bileaflet and monoleaflet mechanical heart valves. Ann. Biomed. Eng. 32(8):1058–1066, 2004.

    Article  Google Scholar 

  43. 43.

    Yoganathan, A. P., Z. He, and S. Casey Jones. Fluid mechanics of heart valves. Annu. Rev. Biomed. Eng. 6:331–362, 2004.

    CAS  Article  Google Scholar 

Download references

Acknowledgments

The research done was partly supported by National Institutes of Health (NIH) under Award Number R01HL119824 and R01HL135505.

Conflict of interest

Dr. Dasi reports having two patent applications on novel surgical and transcatheter valves. He also has a patent issued on vortex generators on heart valves and a patent application on super hydrophobic vortex generator enhanced mechanical heart valves. No other conflicts were reported.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Lakshmi P. Dasi.

Additional information

Associate Editor Aleksander S. Popel oversaw the review of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Video 1 Fluid particles streaks for every valve case in every model over the cardiac cycle (AVI 9111 kb)

Video 1 Fluid particles streaks for every valve case in every model over the cardiac cycle (AVI 9111 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hatoum, H., Dasi, L.P. Reduction of Pressure Gradient and Turbulence Using Vortex Generators in Prosthetic Heart Valves. Ann Biomed Eng 47, 85–96 (2019). https://doi.org/10.1007/s10439-018-02128-6

Download citation

Keywords

  • Bi-leaflet mechanical valves
  • Reynold’s shear stress
  • Vortex generators
  • Co-rotating
  • Counter-rotating
  • Flow separation
  • Anti-coagulant
  • Blood damage