Annals of Biomedical Engineering

, Volume 47, Issue 1, pp 231–242 | Cite as

A Novel Microfluidic Platform for Biomechano-Stimulations on a Chip

  • Lia Prevedello
  • Federica Michielin
  • Manuel Balcon
  • Enrico Savio
  • Piero Pavan
  • Nicola ElvassoreEmail author


Mechanical stress has been proven to be an important factor interfering with many biological functions through mechano-sensitive elements within the cells. Despite the current interest in mechano-transduction, the development of suitable experimental tools is still characterized by the strife to design a compact device that allows high-magnification real-time imaging of the stretched cells, thus enabling to follow the dynamics of cellular response to mechanical stimulations. Here we present a microfluidic multi-layered chip that allows mechanical deformation of adherent cells maintaining a fixed focal plane, while allowing independent control of the soluble microenvironment. The device was optimized with the aid of FEM simulation and fully characterized in terms of mechanical deformation. Different cell lines were exposed to tunable mechanical strain, which results in continuous area deformation up to 20%. Thanks to the coupling of chemical glass etching, 2-dimensional deformation of a thin elastomeric membrane and microfluidic cell culture, the developed device allows a unique combination of cell mechanical stimulation, in line imaging and accurate control of cell culture microenvironment.


Cell stretching Microfluidics Finite Element Method Focal plane 



This research was supported by Progetti di Eccellenza CaRiPaRo, Oak Foundation Award (Grant #W1095/OCAY-14-191) and TRANSAC Progetto Strategico Universitá di Padova. This research was supported by the NIHR GOSH BRC. The views expressed are those of the author(s) and not necessarily those of the NHS, the NIHR or the Department of Health.

Supplementary material

10439_2018_2121_MOESM1_ESM.avi (390 kb)
Supplementary material 1 (AVI 390 kb)
10439_2018_2121_MOESM2_ESM.avi (401 kb)
Supplementary material 2 (AVI 401 kb)
10439_2018_2121_MOESM3_ESM.avi (272 kb)
Supplementary material 3 (AVI 271 kb)


  1. 1.
    Ahmed, W. W., T. Wolfram, A. M. Goldyn, K. Bruellhoff, B. A. Rioja, M. Möller, J. P. Spatz, T. A. Saif, J. Groll, and R. Kemkemer. Myoblast morphology and organization on biochemically micro-patterned hydrogel coatings under cyclic mechanical strain. Biomaterials 31:250–258, 2010.CrossRefGoogle Scholar
  2. 2.
    Alioscha-Perez, M., C. Benadiba, K. Goossens, S. Kasas, G. Dietler, R. Willaert, and H. Sahli. A Robust actin filaments image analysis framework. PLOS Comput. Biol. 12:e1005063, 2016.CrossRefGoogle Scholar
  3. 3.
    Amaya, R., A. Pierides, and J. M. Tarbell. The interaction between fluid wall shear stress and solid circumferential strain affects endothelial gene expression. PLoS ONE 10:e0129952, 2015.CrossRefGoogle Scholar
  4. 4.
    Antunes, M., T. Pereira, J. V. Cordeiro, L. Almeida, and A. Jacinto. Coordinated waves of actomyosin flow and apical cell constriction immediately after wounding. J. Cell Biol. 202:365–379, 2013.CrossRefGoogle Scholar
  5. 5.
    Aragona, M., T. Panciera, A. Manfrin, S. Giulitti, F. Michielin, N. Elvassore, S. Dupont, and S. Piccolo. A mechanical checkpoint controls multicellular growth through YAP/TAZ regulation by actin-processing factors. Cell 154:1047–1059, 2013.CrossRefGoogle Scholar
  6. 6.
    Balachandran, K., P. W. Alford, J. Wylie-Sears, J. A. Goss, A. Grosberg, J. Bischoff, E. Aikawa, R. A. Levine, and K. K. Parker. Cyclic strain induces dual-mode endothelial mesenchymal transformation of the cardiac valve. Proc. Natl. Acad. Sci. USA 108:19943–19948, 2011.CrossRefGoogle Scholar
  7. 7.
    Chang, Y. J., C. J. Tsai, F. G. Tseng, T. J. Chen, and T. W. Wang. Micropatterned stretching system for the investigation of mechanical tension on neural stem cells behavior. Nanomed. Nanotechnol. Biol. Med. 9:345–355, 2013.CrossRefGoogle Scholar
  8. 8.
    Chiquet, M., and M. Flück. Chapter 8 Early responses to mechanical stress: from signals at the cell surface to altered gene expression. In: Cell and Molecular Response to Stress, edited by K. B. Storey, and J. M. Storey. Amsterdam: Elsevier, 2001, pp. 97–110.Google Scholar
  9. 9.
    Dai, G., M. R. Kaazempur-Mofrad, S. Natarajan, Y. Zhang, S. Vaughn, B. R. Blackman, R. D. Kamm, G. García-Cardeña, and M. A. Gimbrone. Distinct endothelial phenotypes evoked by arterial waveforms derived from atherosclerosis-susceptible and -resistant regions of human vasculature. Proc. Natl. Acad. Sci. 101:14871–14876, 2004.CrossRefGoogle Scholar
  10. 10.
    Formigli, L., E. Meacci, C. Sassoli, R. Squecco, D. Nosi, F. Chellini, F. Naro, F. Francini, and S. Zecchi-Orlandini. Cytoskeleton/stretch-activated ion channel interaction regulates myogenic differentiation of skeletal myoblasts. J. Cell. Physiol. 211:296–306, 2007.CrossRefGoogle Scholar
  11. 11.
    Giobbe, G. G., F. Michielin, C. Luni, S. Giulitti, S. Martewicz, S. Dupont, A. Floreani, and N. Elvassore. Functional differentiation of human pluripotent stem cells on a chip. Nat. Methods 12:637–640, 2015.CrossRefGoogle Scholar
  12. 12.
    Giulitti, S., A. Zambon, F. Michielin, and N. Elvassore. Mechanotransduction through substrates engineering and microfluidic devices. Curr. Opin. Chem. Eng. 11:67–76, 2016.CrossRefGoogle Scholar
  13. 13.
    Gudipaty, S. A., J. Lindblom, P. D. Loftus, M. J. Redd, K. Edes, C. F. Davey, V. Krishnegowda, and J. Rosenblatt. Mechanical stretch triggers rapid epithelial cell division through Piezo1. Nature 543:118–121, 2017.CrossRefGoogle Scholar
  14. 14.
    Ishida, T., M. Takahashi, M. A. Corson, and B. C. Berk. Fluid shear stress-mediated signal transduction: how do endothelial cells transduce mechanical force into biological responses? Ann. N. Y. Acad. Sci. 811:12–23, 1997.CrossRefGoogle Scholar
  15. 15.
    Johnston, A. P. W., J. Baker, M. D. Lisio, and G. Parise. Skeletal muscle myoblasts possess a stretch-responsive local angiotensin signalling system. J. Renin Angiotensin Aldosterone Syst. 12:75–84, 2011.CrossRefGoogle Scholar
  16. 16.
    Kamble, H., M. J. Barton, M. Jun, S. Park, and N.-T. Nguyen. Cell stretching devices as research tools: engineering and biological considerations. Lab. Chip 16:3193–3203, 2016.CrossRefGoogle Scholar
  17. 17.
    Kosmalska, A. J., L. Casares, A. Elosegui-Artola, J. J. Thottacherry, R. Moreno-Vicente, V. González-Tarragó, M. Á. del Pozo, S. Mayor, M. Arroyo, D. Navajas, X. Trepat, N. C. Gauthier, and P. Roca-Cusachs. Physical principles of membrane remodelling during cell mechanoadaptation. Nat. Commun. 6:7292, 2015.CrossRefGoogle Scholar
  18. 18.
    Kumar, A., R. Murphy, P. Robinson, L. Wei, and A. M. Boriek. Cyclic mechanical strain inhibits skeletal myogenesis through activation of focal adhesion kinase, Rac-1 GTPase, and NF-κB transcription factor. FASEB J. 18:1524–1535, 2004.CrossRefGoogle Scholar
  19. 19.
    Maul, T. M., D. W. Chew, A. Nieponice, and D. A. Vorp. Mechanical stimuli differentially control stem cell behavior: morphology, proliferation, and differentiation. Biomech. Model. Mechanobiol. 10:939–953, 2011.CrossRefGoogle Scholar
  20. 20.
    McCain, M. L., and K. K. Parker. Mechanotransduction: the role of mechanical stress, myocyte shape, and cytoskeletal architecture on cardiac function. Pflüg. Arch. Eur. J. Physiol. 462:89, 2011.CrossRefGoogle Scholar
  21. 21.
    Michielin, F., E. Serena, P. Pavan, and N. Elvassore. Microfluidic-assisted cyclic mechanical stimulation affects cellular membrane integrity in a human muscular dystrophy in vitro model. RSC Adv. 5:98429–98439, 2015.CrossRefGoogle Scholar
  22. 22.
    Nakai, N., F. Kawano, Y. Oke, S. Nomura, T. Ohira, R. Fujita, and Y. Ohira. Mechanical stretch activates signaling events for protein translation initiation and elongation in C2C12 myoblasts. Mol. Cells 30:513–518, 2010.CrossRefGoogle Scholar
  23. 23.
    Prosser, B. L., R. J. Khairallah, A. P. Ziman, C. W. Ward, and W. J. Lederer. X-ROS signaling in the heart and skeletal muscle: stretch-dependent local ROS regulates [Ca2+]i. J. Mol. Cell. Cardiol. 58:172–181, 2013.CrossRefGoogle Scholar
  24. 24.
    Ruder, W. C., E. D. Pratt, N. Z. D. Brandy, D. A. LaVan, P. R. LeDuc, and J. F. Antaki. Calcium signaling is gated by a mechanical threshold in three-dimensional environments. Sci. Rep. 2:554, 2012.CrossRefGoogle Scholar
  25. 25.
    Salameh, A., A. Wustmann, S. Karl, K. Blanke, D. Apel, D. Rojas-Gomez, H. Franke, F. W. Mohr, J. Janousek, and S. Dhein. Cyclic mechanical stretch induces cardiomyocyte orientation and polarization of the gap junction protein connexin43. Circ. Res. 106:1592–1602, 2010.CrossRefGoogle Scholar
  26. 26.
    Shannon, E. K., A. Stevens, W. Edrington, Y. Zhao, A. K. Jayasinghe, A. Page-McCaw, and M. S. Hutson. Multiple mechanisms drive calcium signal dynamics around laser-induced epithelial wounds. Biophys. J. 113:1623–1635, 2017.CrossRefGoogle Scholar
  27. 27.
    Shyy, J. Y.-J., and S. Chien. Role of integrins in cellular responses to mechanical stress and adhesion. Curr. Opin. Cell Biol. 9:707–713, 1997.CrossRefGoogle Scholar
  28. 28.
    Suchyna, T. M., and F. Sachs. Mechanosensitive channel properties and membrane mechanics in mouse dystrophic myotubes. J. Physiol. 581:369–387, 2007.CrossRefGoogle Scholar
  29. 29.
    Tulloch, N. L., V. Muskheli, M. V. Razumova, F. S. Korte, M. Regnier, K. D. Hauch, L. Pabon, H. Reinecke, and C. E. Murry. Growth of engineered human myocardium with mechanical loading and vascular coculture. Circ. Res. 109:47–59, 2011.CrossRefGoogle Scholar
  30. 30.
    Vindin, H., L. Bischof, P. Gunning, and J. Stehn. Validation of an algorithm to quantify changes in Actin Cytoskeletal Organization. J. Biomol. Screen. 19:354–368, 2014.CrossRefGoogle Scholar
  31. 31.
    Yeung, E. W., and D. G. Allen. Stretch-activated channels in stretch-induced muscle damage: role in muscular dystrophy. Clin. Exp. Pharmacol. Physiol. 31:551–556, 2004.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2018

Authors and Affiliations

  1. 1.Department of Industrial Engineering (DII)University of PadovaPaduaItaly
  2. 2.Venetian Institute of Molecular Medicine (VIMM)PaduaItaly
  3. 3.Great Ormond Street Institute of Child HealthUniversity College LondonLondonUK
  4. 4.Shanghai Institute for Advanced Immunochemical Studies (SIAIS)ShanghaiTech UniversityShanghaiChina

Personalised recommendations