Novel Polymeric Valve for Transcatheter Aortic Valve Replacement Applications: In Vitro Hemodynamic Study

Abstract

Transcatheter aortic valve replacement (TAVR) is a minimally-invasive approach for treating severe aortic stenosis. All clinically-used TAVR valves to date utilize chemically-fixed xenograft as the leaflet material. Inherent limitation of the tissue (e.g., calcific degeneration) motivates the search for alternative leaflet material. Here we introduce a novel polymeric TAVR valve that was designed to address the limitations of tissue-valves. In this study, we experimentally evaluated the hemodynamic performance of the valve and compared its performance to clinically-used valves: a gold standard surgical tissue valve, and a TAVR valve. Our comparative testing protocols included: (i) baseline hydrodynamics (ISO:5840-3), (ii) complementary patient-specific hydrodynamics in a dedicated system, and (iii) thrombogenicity. The patient-specific testing system facilitated comparing TAVR valves performance under more realistic conditions. Baseline hydrodynamics results at CO 4–7 L/min showed superior effective orifice area (EOA) for the polymer valve, most-notably as compared to the reference TAVR valve. Regurgitation fraction was higher in the polymeric valve, but within the ISO minimum requirements. Thrombogenicity trends followed the EOA results with the polymeric valve being the least thrombogenic, and clinical TAVR being the most. Hemodynamic-wise, the results strongly indicate that our polymeric TAVR valve can outperform tissue valves.

This is a preview of subscription content, log in to check access.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Abbreviations

AS:

Aortic stenosis

CAVD:

Calcific aortic valve disease

CO:

Cardiac output

DTE:

Device thrombogenic emulation

EOA:

Effective orifice area

GFP:

Gel-filtered platelets

HR:

Heart rate

MAP:

Mean arterial pressure

PD:

Pulse duplicator

PVL:

Paravalvular leak

SAVR:

Surgical aortic valve replacement

SV:

Stroke volume

TAVR:

Transcatheter aortic valve replacement

References

  1. 1.

    Alavi, S. H., E. M. Groves, and A. Kheradvar. The effects of transcatheter valve crimping on pericardial leaflets. Ann. Thorac. Surg. 97:1260–1266, 2014.

    Article  PubMed  Google Scholar 

  2. 2.

    American College of Cardiology/American Heart Association Task Force on Practice Guidelines, and The Society of Cardiovascular, and The Society for Cardiovascular, Interventions, S. Society of Thoracic, R. O. Bonow, B. A. Carabello, C. Kanu, A. C. de Leon, Jr, D. P. Faxon, M. D. Freed, W. H. Gaasch, B. W. Lytle, R. A. Nishimura, P. T. O’Gara, R. A. O’Rourke, C. M. Otto, P. M. Shah, J. S. Shanewise, S. C. Smith, Jr, A. K. Jacobs, C. D. Adams, J. L. Anderson, E. M. Antman, D. P. Faxon, V. Fuster, J. L. Halperin, L. F. Hiratzka, S. A. Hunt, B. W. Lytle, R. Nishimura, R. L. Page, and B. Riegel. ACC/AHA 2006 guidelines for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (writing committee to revise the 1998 Guidelines for the Management of Patients With Valvular Heart Disease): developed in collaboration with the Society of Cardiovascular Anesthesiologists: endorsed by the Society for Cardiovascular Angiography and Interventions and the Society of Thoracic Surgeons. Circulation 114:e84–e231, 2006.

    Google Scholar 

  3. 3.

    Arsalan, M., and T. Walther. Durability of prostheses for transcatheter aortic valve implantation. Nat. Rev. Cardiol. 13:360–367, 2016.

    Article  CAS  PubMed  Google Scholar 

  4. 4.

    Bezuidenhout, D., D. F. Williams, and P. Zilla. Polymeric heart valves for surgical implantation, catheter-based technologies and heart assist devices. Biomaterials 36:6–25, 2015.

    Article  CAS  PubMed  Google Scholar 

  5. 5.

    Bianchi, M., G. Marom, R. P. Ghosh, H. A. Fernandez, J. R. Taylor, Jr, M. J. Slepian, and D. Bluestein. Effect of balloon-expandable transcatheter aortic valve replacement positioning: a patient-specific numerical model. Artif. Organs 40(12):E292–E302, 2016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Claiborne, T. E., G. Girdhar, S. Gallocher-Lowe, J. Sheriff, Y. P. Kato, L. Pinchuk, R. T. Schoephoerster, J. Jesty, and D. Bluestein. Thrombogenic potential of Innovia polymer valves versus Carpentier-Edwards Perimount Magna aortic bioprosthetic valves. ASAIO J. 57:26–31, 2011.

    Article  PubMed  Google Scholar 

  7. 7.

    Claiborne, T. E., J. Sheriff, M. Kuetting, U. Steinseifer, M. J. Slepian, and D. Bluestein. In vitro evaluation of a novel hemodynamically optimized trileaflet polymeric prosthetic heart valve. J. Biomech. Eng. 135:021021, 2013.

    Article  PubMed  Google Scholar 

  8. 8.

    Claiborne, T. E., M. J. Slepian, S. Hossainy, and D. Bluestein. Polymeric trileaflet prosthetic heart valves: evolution and path to clinical reality. Expert Rev. Med. Devices 9:577–594, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Claiborne, T. E., M. Xenos, J. Sheriff, W.-C. Chiu, J. S. Soares, Y. Alemu, S. Gupta, S. Judex, M. J. Slepian, and D. Bluestein. Towards optimization of a novel trileaflet polymeric prosthetic heart valve via device thrombogenicity emulation. ASAIO J. 59:275–283, 2013.

    Article  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Dandeniyage, L. S., R. Adhikari, M. Bown, R. Shanks, B. Adhikari, C. D. Easton, T. R. Gengenbach, D. Cookson, and P. A. Gunatillake. Morphology and surface properties of high strength siloxane poly(urethane-urea)s developed for heart valve application. J. Biomed. Mater. Res. B 2018. https://doi.org/10.1002/jbm.b.34101.

    Article  Google Scholar 

  11. 11.

    Dandeniyage, L. S., P. A. Gunatillake, R. Adhikari, M. Bown, R. Shanks, and B. Adhikari. Development of high strength siloxane poly(urethane-urea) elastomers based on linked macrodiols for heart valve application. J. Biomed. Mater. Res. B 106(5):1712–1720, 2017.

    Article  CAS  Google Scholar 

  12. 12.

    Dasi, L. P., H. Hatoum, A. Kheradvar, R. Zareian, S. H. Alavi, W. Sun, C. Martin, T. Pham, Q. Wang, P. A. Midha, V. Raghav, and A. P. Yoganathan. On the mechanics of transcatheter aortic valve replacement. Ann. Biomed. Eng. 45:310–331, 2017.

    Article  PubMed  Google Scholar 

  13. 13.

    Hatoum, H., J. Dollery, S. M. Lilly, J. Crestanello, and L. P. Dasi. Impact of patient-specific morphologies on sinus flow stasis in transcatheter aortic valve replacement: an in vitro study. J. Thorac. Cardiovasc. Surg. 2018. https://doi.org/10.1016/j.jtcvs.2018.05.086.

    Article  PubMed  Google Scholar 

  14. 14.

    Hatoum, H., A. Yousefi, S. Lilly, P. Maureira, J. Crestanello, and L. P. Dasi. An in vitro evaluation of turbulence after transcatheter aortic valve implantation. J. Thorac. Cardiovasc. Surg. 2018. https://doi.org/10.1016/j.jtcvs.2018.05.042.

    Article  PubMed  Google Scholar 

  15. 15.

    Jesty, J., and D. Bluestein. Acetylated prothrombin as a substrate in the measurement of the procoagulant activity of platelets: elimination of the feedback activation of platelets by thrombin. Anal. Biochem. 272:64–70, 1999.

    Article  CAS  PubMed  Google Scholar 

  16. 16.

    Kallis, P., J. F. Sneddon, I. A. Simpson, A. Fung, J. R. Pepper, and E. E. Smith. Clinical and hemodynamic evaluation of the 19-mm Carpentier-Edwards supraannular aortic valve. Ann. Thorac. Surg. 54:1182–1185, 1992.

    Article  CAS  PubMed  Google Scholar 

  17. 17.

    Kamioka, N., J. Wells, P. Keegan, S. Lerakis, J. Binongo, F. Corrigan, J. Condado, A. Patel, J. Forcillo, L. Ogburn, A. Dong, H. Caughron, A. Simone, B. Leshnower, C. Devireddy, K. Mavromatis, R. Guyton, J. Stewart, V. Thourani, P. C. Block, and V. Babaliaros. Predictors and clinical outcomes of next-day discharge after minimalist transfemoral transcatheter aortic valve replacement. JACC Cardiovasc. Interv. 11:107–115, 2018.

    Article  PubMed  Google Scholar 

  18. 18.

    Kheradvar, A., E. M. Groves, L. P. Dasi, S. H. Alavi, R. Tranquillo, K. J. Grande-Allen, C. A. Simmons, B. Griffith, A. Falahatpisheh, C. J. Goergen, M. R. Mofrad, F. Baaijens, S. H. Little, and S. Canic. Emerging trends in heart valve engineering: Part I. Solutions for future. Ann. Biomed. Eng. 43:833–843, 2015.

    Article  PubMed  Google Scholar 

  19. 19.

    Khoffi, F., and F. Heim. Mechanical degradation of biological heart valve tissue induced by low diameter crimping: an early assessment. J. Mech. Behav. Biomed. Mater. 44:71–75, 2015.

    Article  CAS  PubMed  Google Scholar 

  20. 20.

    Luscher, T. F. Cutting edge research on transcatheter aortic valve implantation: moving indications, complications, and current outcomes. Eur. Heart J. 39:633–636, 2018.

    Article  PubMed  Google Scholar 

  21. 21.

    Martin, C., and W. Sun. Transcatheter valve underexpansion limits leaflet durability: implications for valve-in-valve procedures. Ann. Biomed. Eng. 45:394–404, 2017.

    Article  PubMed  Google Scholar 

  22. 22.

    Marwan, M., N. Mekkhala, M. Goller, J. Rother, D. Bittner, A. Schuhbaeck, M. Hell, G. Muschiol, J. Kolwelter, R. Feyrer, C. Schlundt, S. Achenbach, and M. Arnold. Leaflet thrombosis following transcatheter aortic valve implantation. J. Cardiovasc. Comput. Tomogr. 12:8–13, 2018.

    Article  CAS  PubMed  Google Scholar 

  23. 23.

    Midha, P. A., V. Raghav, R. Sharma, J. F. Condado, I. U. Okafor, T. Rami, G. Kumar, V. H. Thourani, H. Jilaihawi, V. Babaliaros, R. R. Makkar, and A. P. Yoganathan. The fluid mechanics of transcatheter heart valve leaflet thrombosis in the neosinus. Circulation 136:1598–1609, 2017.

    Article  PubMed  Google Scholar 

  24. 24.

    Min, J. K., D. S. Berman, and J. Leipsic. Multimodality Imaging for Transcatheter Aortic Valve Replacement. New York: Springer Science & Business Media, 2013.

    Google Scholar 

  25. 25.

    Pinchuk, L., and Y. Zhou. Crosslinked polyolefins for biomedical applicatios and method of making same. In: USPTO, edited by USPTO. Miami: Innovia LLC, 2009.

    Google Scholar 

  26. 26.

    Prawel, D. A., H. Dean, M. Forleo, N. Lewis, J. Gangwish, K. C. Popat, L. P. Dasi, and S. P. James. Hemocompatibility and Hemodynamics of Novel Hyaluronan-Polyethylene Materials for Flexible Heart Valve Leaflets. Cardiovasc. Eng. Technol. 5:70–81, 2014.

    Article  PubMed  Google Scholar 

  27. 27.

    Rahmani, B., S. Tzamtzis, R. Sheridan, M. J. Mullen, J. Yap, A. M. Seifalian, and G. Burriesci. In vitro hydrodynamic assessment of a new transcatheter heart valve concept (the TRISKELE). J. Cardiovasc. Transl. Res. 10:104–115, 2017.

    Article  PubMed  Google Scholar 

  28. 28.

    Rodriguez-Gabella, T., P. Voisine, R. Puri, P. Pibarot, and J. Rodes-Cabau. Aortic bioprosthetic valve durability: incidence, mechanisms, predictors, and management of surgical and transcatheter valve degeneration. J. Am. Coll. Cardiol. 70:1013–1028, 2017.

    Article  PubMed  Google Scholar 

  29. 29.

    Rosenhek, R., T. Binder, G. Maurer, and H. Baumgartner. Normal values for Doppler echocardiographic assessment of heart valve prostheses. J. Am. Soc. Echocardiogr. 16:1116–1127, 2003.

    Article  PubMed  Google Scholar 

  30. 30.

    Rotman, O. M., B. Kovarovic, C. Sadasivan, L. Gruberg, B. B. Lieber, and D. Bluestein. Realistic vascular replicator for TAVR procedures. Cardiovasc. Eng. Technol. 2018. https://doi.org/10.1007/s13239-018-0356-z.

    Article  PubMed  Google Scholar 

  31. 31.

    Scherman, J., D. Bezuidenhout, C. Ofoegbu, D. F. Williams, and P. Zilla. Tavi for low to middle income countries. Eur. Heart J. 38:1182–1184, 2017.

    Article  Google Scholar 

  32. 32.

    Sheriff, J., D. Bluestein, G. Girdhar, and J. Jesty. High-shear stress sensitizes platelets to subsequent low-shear conditions. Ann. Biomed. Eng. 38:1442–1450, 2010.

    Article  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Sheriff, J., T. E. Claiborne, P. L. Tran, R. Kothadia, S. George, Y. P. Kato, L. Pinchuk, M. J. Slepian, and D. Bluestein. Physical characterization and platelet interactions under shear flows of a novel thermoset polyisobutylene-based co-polymer. ACS Appl. Mater. Interfaces 7:22058–22066, 2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Thourani, V. H., S. Kodali, R. R. Makkar, H. C. Herrmann, M. Williams, V. Babaliaros, R. Smalling, S. Lim, S. C. Malaisrie, and S. Kapadia. Transcatheter aortic valve replacement versus surgical valve replacement in intermediate-risk patients: a propensity score analysis. Lancet 387:2218–2225, 2016.

    Article  Google Scholar 

  35. 35.

    Vahanian, A., H. Baumgartner, J. Bax, E. Butchart, R. Dion, G. Filippatos, F. Flachskampf, R. Hall, B. Iung, J. Kasprzak, P. Nataf, P. Tornos, L. Torracca, A. Wenink, and Task Force on the Management of Valvular Hearth Disease of the European Society of Cardiology and E. S. C. C. F. P. Guidelines. Guidelines on the management of valvular heart disease: the Task Force on the Management of Valvular Heart Disease of the European Society of Cardiology. Eur. Heart J. 28:230–268, 2007.

    PubMed  Google Scholar 

  36. 36.

    Wang, M., A. P. Furnary, H. F. Li, and G. L. Grunkemeier. Bioprosthetic aortic valve durability: a meta-regression of published studies. Ann. Thorac. Surg. 104:1080–1087, 2017.

    Article  PubMed  Google Scholar 

  37. 37.

    Yin, W., Y. Alemu, K. Affeld, J. Jesty, and D. Bluestein. Flow-induced platelet activation in bileaflet and monoleaflet mechanical heart valves. Ann. Biomed. Eng. 32:1058–1066, 2004.

    Article  PubMed  Google Scholar 

  38. 38.

    Yousefi, A., D. L. Bark, and L. P. Dasi. Effect of arched leaflets and stent profile on the hemodynamics of tri-leaflet flexible polymeric heart valves. Ann. Biomed. Eng. 45(2):464–475, 2016.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Braile Biomédica (Brazil), for providing us with the Inovare valve samples. This project was supported by NIH-NIBIB Quantum Award Phase II-U01EB012487 (DB), NHLBI STTR R41-HL134418 (DB), and the Center for Biotechnology: a New York State Center for Advanced Technology, New York State Department of Economic Development; and corporate support.

Conflict of interest

Author OMR is a consultant for Polynova Cardiovascular Inc. Authors MJS and DB has stock ownership in Polynova Cardiovascular Inc. Authors BK, WCC, MB and GM declare that they have no conflicts of interest.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Danny Bluestein.

Additional information

Associate Editor Arash Kheradvar oversaw the review of this article.

Electronic supplementary material

Supplementary material 1 (PDF 1480 kb)

Online Video 1

Front (aortic) view of the test valves in the Vivitro PD, at CO of 5 l/min. Supplementary material 2 (MP4 12938 kb)

Online Video 2

Endoscopic front (aortic) view of the test valves in the Vivitro PD, at CO of 5 l/min. Supplementary material 3 (MP4 16800 kb)

Online Video 3

Angiogram of the 20-mm Polynova polymeric TAVR valve in the patient-specific CAVD model in the Replicator. On the left is the original angiogram. On the right is the subtracted angiogram for better visualization of regurgitation flow. Supplementary material 4 (MP4 4636 kb)

Online Video 4

Angiogram of the 19-mm Carpentier-Edwards Perimount Magna Ease SAVR valve in the patient-specific CAVD model in the Replicator. On the left is the original angiogram. On the right is the subtracted angiogram for better visualization of regurgitation flow. Supplementary material 5 (MP4 9299 kb)

Online Video 5

Angiogram of the 20-mm Inovare TAVR valve in the patient-specific CAVD model in the Replicator. On the left is the original angiogram. On the right is the subtracted angiogram for better visualization of regurgitation flow. Supplementary material 6 (MP4 5668 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rotman, O.M., Kovarovic, B., Chiu, W. et al. Novel Polymeric Valve for Transcatheter Aortic Valve Replacement Applications: In Vitro Hemodynamic Study. Ann Biomed Eng 47, 113–125 (2019). https://doi.org/10.1007/s10439-018-02119-7

Download citation

Keywords

  • TAVI
  • TAVR
  • Aortic stenosis
  • Heart valve
  • Prosthetic heart valve
  • Valve hydrodynamics
  • Thrombogenicity
  • Medical device