Novel Polymeric Valve for Transcatheter Aortic Valve Replacement Applications: In Vitro Hemodynamic Study

  • Oren M. Rotman
  • Brandon Kovarovic
  • Wei-Che Chiu
  • Matteo Bianchi
  • Gil Marom
  • Marvin J. Slepian
  • Danny Bluestein


Transcatheter aortic valve replacement (TAVR) is a minimally-invasive approach for treating severe aortic stenosis. All clinically-used TAVR valves to date utilize chemically-fixed xenograft as the leaflet material. Inherent limitation of the tissue (e.g., calcific degeneration) motivates the search for alternative leaflet material. Here we introduce a novel polymeric TAVR valve that was designed to address the limitations of tissue-valves. In this study, we experimentally evaluated the hemodynamic performance of the valve and compared its performance to clinically-used valves: a gold standard surgical tissue valve, and a TAVR valve. Our comparative testing protocols included: (i) baseline hydrodynamics (ISO:5840-3), (ii) complementary patient-specific hydrodynamics in a dedicated system, and (iii) thrombogenicity. The patient-specific testing system facilitated comparing TAVR valves performance under more realistic conditions. Baseline hydrodynamics results at CO 4–7 L/min showed superior effective orifice area (EOA) for the polymer valve, most-notably as compared to the reference TAVR valve. Regurgitation fraction was higher in the polymeric valve, but within the ISO minimum requirements. Thrombogenicity trends followed the EOA results with the polymeric valve being the least thrombogenic, and clinical TAVR being the most. Hemodynamic-wise, the results strongly indicate that our polymeric TAVR valve can outperform tissue valves.


TAVI TAVR Aortic stenosis Heart valve Prosthetic heart valve Valve hydrodynamics Thrombogenicity Medical device 



Aortic stenosis


Calcific aortic valve disease


Cardiac output


Device thrombogenic emulation


Effective orifice area


Gel-filtered platelets


Heart rate


Mean arterial pressure


Pulse duplicator


Paravalvular leak


Surgical aortic valve replacement


Stroke volume


Transcatheter aortic valve replacement



The authors would like to thank Braile Biomédica (Brazil), for providing us with the Inovare valve samples. This project was supported by NIH-NIBIB Quantum Award Phase II-U01EB012487 (DB), NHLBI STTR R41-HL134418 (DB), and the Center for Biotechnology: a New York State Center for Advanced Technology, New York State Department of Economic Development; and corporate support.

Conflict of interest

Author OMR is a consultant for Polynova Cardiovascular Inc. Authors MJS and DB has stock ownership in Polynova Cardiovascular Inc. Authors BK, WCC, MB and GM declare that they have no conflicts of interest.

Supplementary material

10439_2018_2119_MOESM1_ESM.pdf (1.4 mb)
Supplementary material 1 (PDF 1480 kb)
10439_2018_2119_MOESM2_ESM.mp4 (12.6 mb)
Online Video 1 Front (aortic) view of the test valves in the Vivitro PD, at CO of 5 l/min. Supplementary material 2 (MP4 12938 kb)
10439_2018_2119_MOESM3_ESM.mp4 (16.4 mb)
Online Video 2 Endoscopic front (aortic) view of the test valves in the Vivitro PD, at CO of 5 l/min. Supplementary material 3 (MP4 16800 kb)
10439_2018_2119_MOESM4_ESM.mp4 (4.5 mb)
Online Video 3 Angiogram of the 20-mm Polynova polymeric TAVR valve in the patient-specific CAVD model in the Replicator. On the left is the original angiogram. On the right is the subtracted angiogram for better visualization of regurgitation flow. Supplementary material 4 (MP4 4636 kb)
10439_2018_2119_MOESM5_ESM.mp4 (9.1 mb)
Online Video 4 Angiogram of the 19-mm Carpentier-Edwards Perimount Magna Ease SAVR valve in the patient-specific CAVD model in the Replicator. On the left is the original angiogram. On the right is the subtracted angiogram for better visualization of regurgitation flow. Supplementary material 5 (MP4 9299 kb)
10439_2018_2119_MOESM6_ESM.mp4 (5.5 mb)
Online Video 5 Angiogram of the 20-mm Inovare TAVR valve in the patient-specific CAVD model in the Replicator. On the left is the original angiogram. On the right is the subtracted angiogram for better visualization of regurgitation flow. Supplementary material 6 (MP4 5668 kb)


  1. 1.
    Alavi, S. H., E. M. Groves, and A. Kheradvar. The effects of transcatheter valve crimping on pericardial leaflets. Ann. Thorac. Surg. 97:1260–1266, 2014.CrossRefPubMedGoogle Scholar
  2. 2.
    American College of Cardiology/American Heart Association Task Force on Practice Guidelines, and The Society of Cardiovascular, and The Society for Cardiovascular, Interventions, S. Society of Thoracic, R. O. Bonow, B. A. Carabello, C. Kanu, A. C. de Leon, Jr, D. P. Faxon, M. D. Freed, W. H. Gaasch, B. W. Lytle, R. A. Nishimura, P. T. O’Gara, R. A. O’Rourke, C. M. Otto, P. M. Shah, J. S. Shanewise, S. C. Smith, Jr, A. K. Jacobs, C. D. Adams, J. L. Anderson, E. M. Antman, D. P. Faxon, V. Fuster, J. L. Halperin, L. F. Hiratzka, S. A. Hunt, B. W. Lytle, R. Nishimura, R. L. Page, and B. Riegel. ACC/AHA 2006 guidelines for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (writing committee to revise the 1998 Guidelines for the Management of Patients With Valvular Heart Disease): developed in collaboration with the Society of Cardiovascular Anesthesiologists: endorsed by the Society for Cardiovascular Angiography and Interventions and the Society of Thoracic Surgeons. Circulation 114:e84–e231, 2006.CrossRefGoogle Scholar
  3. 3.
    Arsalan, M., and T. Walther. Durability of prostheses for transcatheter aortic valve implantation. Nat. Rev. Cardiol. 13:360–367, 2016.CrossRefPubMedGoogle Scholar
  4. 4.
    Bezuidenhout, D., D. F. Williams, and P. Zilla. Polymeric heart valves for surgical implantation, catheter-based technologies and heart assist devices. Biomaterials 36:6–25, 2015.CrossRefPubMedGoogle Scholar
  5. 5.
    Bianchi, M., G. Marom, R. P. Ghosh, H. A. Fernandez, J. R. Taylor, Jr, M. J. Slepian, and D. Bluestein. Effect of balloon-expandable transcatheter aortic valve replacement positioning: a patient-specific numerical model. Artif. Organs 40(12):E292–E302, 2016.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Claiborne, T. E., G. Girdhar, S. Gallocher-Lowe, J. Sheriff, Y. P. Kato, L. Pinchuk, R. T. Schoephoerster, J. Jesty, and D. Bluestein. Thrombogenic potential of Innovia polymer valves versus Carpentier-Edwards Perimount Magna aortic bioprosthetic valves. ASAIO J. 57:26–31, 2011.CrossRefPubMedGoogle Scholar
  7. 7.
    Claiborne, T. E., J. Sheriff, M. Kuetting, U. Steinseifer, M. J. Slepian, and D. Bluestein. In vitro evaluation of a novel hemodynamically optimized trileaflet polymeric prosthetic heart valve. J. Biomech. Eng. 135:021021, 2013.CrossRefPubMedGoogle Scholar
  8. 8.
    Claiborne, T. E., M. J. Slepian, S. Hossainy, and D. Bluestein. Polymeric trileaflet prosthetic heart valves: evolution and path to clinical reality. Expert Rev. Med. Devices 9:577–594, 2012.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Claiborne, T. E., M. Xenos, J. Sheriff, W.-C. Chiu, J. S. Soares, Y. Alemu, S. Gupta, S. Judex, M. J. Slepian, and D. Bluestein. Towards optimization of a novel trileaflet polymeric prosthetic heart valve via device thrombogenicity emulation. ASAIO J. 59:275–283, 2013.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Dandeniyage, L. S., R. Adhikari, M. Bown, R. Shanks, B. Adhikari, C. D. Easton, T. R. Gengenbach, D. Cookson, and P. A. Gunatillake. Morphology and surface properties of high strength siloxane poly(urethane-urea)s developed for heart valve application. J. Biomed. Mater. Res. B 2018. Scholar
  11. 11.
    Dandeniyage, L. S., P. A. Gunatillake, R. Adhikari, M. Bown, R. Shanks, and B. Adhikari. Development of high strength siloxane poly(urethane-urea) elastomers based on linked macrodiols for heart valve application. J. Biomed. Mater. Res. B 106(5):1712–1720, 2017.CrossRefGoogle Scholar
  12. 12.
    Dasi, L. P., H. Hatoum, A. Kheradvar, R. Zareian, S. H. Alavi, W. Sun, C. Martin, T. Pham, Q. Wang, P. A. Midha, V. Raghav, and A. P. Yoganathan. On the mechanics of transcatheter aortic valve replacement. Ann. Biomed. Eng. 45:310–331, 2017.CrossRefPubMedGoogle Scholar
  13. 13.
    Hatoum, H., J. Dollery, S. M. Lilly, J. Crestanello, and L. P. Dasi. Impact of patient-specific morphologies on sinus flow stasis in transcatheter aortic valve replacement: an in vitro study. J. Thorac. Cardiovasc. Surg. 2018. Scholar
  14. 14.
    Hatoum, H., A. Yousefi, S. Lilly, P. Maureira, J. Crestanello, and L. P. Dasi. An in vitro evaluation of turbulence after transcatheter aortic valve implantation. J. Thorac. Cardiovasc. Surg. 2018. Scholar
  15. 15.
    Jesty, J., and D. Bluestein. Acetylated prothrombin as a substrate in the measurement of the procoagulant activity of platelets: elimination of the feedback activation of platelets by thrombin. Anal. Biochem. 272:64–70, 1999.CrossRefPubMedGoogle Scholar
  16. 16.
    Kallis, P., J. F. Sneddon, I. A. Simpson, A. Fung, J. R. Pepper, and E. E. Smith. Clinical and hemodynamic evaluation of the 19-mm Carpentier-Edwards supraannular aortic valve. Ann. Thorac. Surg. 54:1182–1185, 1992.CrossRefPubMedGoogle Scholar
  17. 17.
    Kamioka, N., J. Wells, P. Keegan, S. Lerakis, J. Binongo, F. Corrigan, J. Condado, A. Patel, J. Forcillo, L. Ogburn, A. Dong, H. Caughron, A. Simone, B. Leshnower, C. Devireddy, K. Mavromatis, R. Guyton, J. Stewart, V. Thourani, P. C. Block, and V. Babaliaros. Predictors and clinical outcomes of next-day discharge after minimalist transfemoral transcatheter aortic valve replacement. JACC Cardiovasc. Interv. 11:107–115, 2018.CrossRefPubMedGoogle Scholar
  18. 18.
    Kheradvar, A., E. M. Groves, L. P. Dasi, S. H. Alavi, R. Tranquillo, K. J. Grande-Allen, C. A. Simmons, B. Griffith, A. Falahatpisheh, C. J. Goergen, M. R. Mofrad, F. Baaijens, S. H. Little, and S. Canic. Emerging trends in heart valve engineering: Part I. Solutions for future. Ann. Biomed. Eng. 43:833–843, 2015.CrossRefPubMedGoogle Scholar
  19. 19.
    Khoffi, F., and F. Heim. Mechanical degradation of biological heart valve tissue induced by low diameter crimping: an early assessment. J. Mech. Behav. Biomed. Mater. 44:71–75, 2015.CrossRefPubMedGoogle Scholar
  20. 20.
    Luscher, T. F. Cutting edge research on transcatheter aortic valve implantation: moving indications, complications, and current outcomes. Eur. Heart J. 39:633–636, 2018.CrossRefPubMedGoogle Scholar
  21. 21.
    Martin, C., and W. Sun. Transcatheter valve underexpansion limits leaflet durability: implications for valve-in-valve procedures. Ann. Biomed. Eng. 45:394–404, 2017.CrossRefPubMedGoogle Scholar
  22. 22.
    Marwan, M., N. Mekkhala, M. Goller, J. Rother, D. Bittner, A. Schuhbaeck, M. Hell, G. Muschiol, J. Kolwelter, R. Feyrer, C. Schlundt, S. Achenbach, and M. Arnold. Leaflet thrombosis following transcatheter aortic valve implantation. J. Cardiovasc. Comput. Tomogr. 12:8–13, 2018.CrossRefPubMedGoogle Scholar
  23. 23.
    Midha, P. A., V. Raghav, R. Sharma, J. F. Condado, I. U. Okafor, T. Rami, G. Kumar, V. H. Thourani, H. Jilaihawi, V. Babaliaros, R. R. Makkar, and A. P. Yoganathan. The fluid mechanics of transcatheter heart valve leaflet thrombosis in the neosinus. Circulation 136:1598–1609, 2017.CrossRefPubMedGoogle Scholar
  24. 24.
    Min, J. K., D. S. Berman, and J. Leipsic. Multimodality Imaging for Transcatheter Aortic Valve Replacement. New York: Springer Science & Business Media, 2013.Google Scholar
  25. 25.
    Pinchuk, L., and Y. Zhou. Crosslinked polyolefins for biomedical applicatios and method of making same. In: USPTO, edited by USPTO. Miami: Innovia LLC, 2009.Google Scholar
  26. 26.
    Prawel, D. A., H. Dean, M. Forleo, N. Lewis, J. Gangwish, K. C. Popat, L. P. Dasi, and S. P. James. Hemocompatibility and Hemodynamics of Novel Hyaluronan-Polyethylene Materials for Flexible Heart Valve Leaflets. Cardiovasc. Eng. Technol. 5:70–81, 2014.CrossRefPubMedGoogle Scholar
  27. 27.
    Rahmani, B., S. Tzamtzis, R. Sheridan, M. J. Mullen, J. Yap, A. M. Seifalian, and G. Burriesci. In vitro hydrodynamic assessment of a new transcatheter heart valve concept (the TRISKELE). J. Cardiovasc. Transl. Res. 10:104–115, 2017.CrossRefPubMedGoogle Scholar
  28. 28.
    Rodriguez-Gabella, T., P. Voisine, R. Puri, P. Pibarot, and J. Rodes-Cabau. Aortic bioprosthetic valve durability: incidence, mechanisms, predictors, and management of surgical and transcatheter valve degeneration. J. Am. Coll. Cardiol. 70:1013–1028, 2017.CrossRefPubMedGoogle Scholar
  29. 29.
    Rosenhek, R., T. Binder, G. Maurer, and H. Baumgartner. Normal values for Doppler echocardiographic assessment of heart valve prostheses. J. Am. Soc. Echocardiogr. 16:1116–1127, 2003.CrossRefPubMedGoogle Scholar
  30. 30.
    Rotman, O. M., B. Kovarovic, C. Sadasivan, L. Gruberg, B. B. Lieber, and D. Bluestein. Realistic vascular replicator for TAVR procedures. Cardiovasc. Eng. Technol. 2018. Scholar
  31. 31.
    Scherman, J., D. Bezuidenhout, C. Ofoegbu, D. F. Williams, and P. Zilla. Tavi for low to middle income countries. Eur. Heart J. 38:1182–1184, 2017.CrossRefGoogle Scholar
  32. 32.
    Sheriff, J., D. Bluestein, G. Girdhar, and J. Jesty. High-shear stress sensitizes platelets to subsequent low-shear conditions. Ann. Biomed. Eng. 38:1442–1450, 2010.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Sheriff, J., T. E. Claiborne, P. L. Tran, R. Kothadia, S. George, Y. P. Kato, L. Pinchuk, M. J. Slepian, and D. Bluestein. Physical characterization and platelet interactions under shear flows of a novel thermoset polyisobutylene-based co-polymer. ACS Appl. Mater. Interfaces 7:22058–22066, 2015.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Thourani, V. H., S. Kodali, R. R. Makkar, H. C. Herrmann, M. Williams, V. Babaliaros, R. Smalling, S. Lim, S. C. Malaisrie, and S. Kapadia. Transcatheter aortic valve replacement versus surgical valve replacement in intermediate-risk patients: a propensity score analysis. Lancet 387:2218–2225, 2016.CrossRefPubMedGoogle Scholar
  35. 35.
    Vahanian, A., H. Baumgartner, J. Bax, E. Butchart, R. Dion, G. Filippatos, F. Flachskampf, R. Hall, B. Iung, J. Kasprzak, P. Nataf, P. Tornos, L. Torracca, A. Wenink, and Task Force on the Management of Valvular Hearth Disease of the European Society of Cardiology and E. S. C. C. F. P. Guidelines. Guidelines on the management of valvular heart disease: the Task Force on the Management of Valvular Heart Disease of the European Society of Cardiology. Eur. Heart J. 28:230–268, 2007.PubMedGoogle Scholar
  36. 36.
    Wang, M., A. P. Furnary, H. F. Li, and G. L. Grunkemeier. Bioprosthetic aortic valve durability: a meta-regression of published studies. Ann. Thorac. Surg. 104:1080–1087, 2017.CrossRefPubMedGoogle Scholar
  37. 37.
    Yin, W., Y. Alemu, K. Affeld, J. Jesty, and D. Bluestein. Flow-induced platelet activation in bileaflet and monoleaflet mechanical heart valves. Ann. Biomed. Eng. 32:1058–1066, 2004.CrossRefPubMedGoogle Scholar
  38. 38.
    Yousefi, A., D. L. Bark, and L. P. Dasi. Effect of arched leaflets and stent profile on the hemodynamics of tri-leaflet flexible polymeric heart valves. Ann. Biomed. Eng. 45(2):464–475, 2016.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Biomedical Engineering Society 2018

Authors and Affiliations

  • Oren M. Rotman
    • 1
  • Brandon Kovarovic
    • 1
  • Wei-Che Chiu
    • 1
  • Matteo Bianchi
    • 1
  • Gil Marom
    • 1
    • 2
  • Marvin J. Slepian
    • 3
  • Danny Bluestein
    • 1
  1. 1.Department of Biomedical EngineeringStony Brook UniversityStony BrookUSA
  2. 2.School of Mechanical EngineeringTel Aviv UniversityTel AvivIsrael
  3. 3.Department of Biomedical EngineeringUniversity of ArizonaTucsonUSA

Personalised recommendations