Annals of Biomedical Engineering

, Volume 46, Issue 3, pp 498–512 | Cite as

Airflow Simulations in Infant, Child, and Adult Pulmonary Conducting Airways

  • Jessica M. Oakes
  • Steven C. Roth
  • Shawn C. Shadden


The airway structure continuously evolves from birth to adulthood, influencing airflow dynamics and respiratory mechanics. We currently know very little about how airflow patterns change throughout early life and its impact on airway resistance, namely because of experimental limitations. To uncover differences in respiratory dynamics between age groups, we performed subject-specific airflow simulations in an infant, child, and adult conducting airways. Airflow throughout the respiration cycle was calculated by coupling image-based models of the conducting airways to the global respiratory mechanics, where flow was driven by a pressure differential. Trachea diameter was 19, 9, and 4.5 mm for the adult (36 years, female), child (6 years, male), and infant (0.25 years, female), respectively. Mean Reynolds number within the trachea was nearly the same for each subject (1100) and Womersley number was above unity for all three subjects and largest for the adult, highlighting the significance of transient effects. In general, air speeds and airway resistances within the conducting airways were inversely correlated with age; the 3D pressure drop was highest in the infant model. These simulations provide new insight into age-dependent flow dynamics throughout the respiration cycle within subject-specific airways.


Computational fluid dynamics (CFD) Multi-scale Lung Inspiration and expiration 



This work was supported by an ALA Senior Research Training Grant and a University of California Presidential Postdoctoral Fellowship (J. M. Oakes). The authors would like to thank Dr. Jeff Feinstein at Stanford University for providing the thoracic CT images and examining the resulting 3D airway geometries. In addition, we would like to thank Dr. Weiguang Yang for assisting with the CT images and Adam Updegrove for providing modeling expertise. The authors acknowledge the Information Technology Services, Research Computing at Northeastern University for providing high performance computing resources.

Conflict of interest

The authors have no conflict of interest related to the work presented in this manuscript.


  1. 1.
    Amirav, I., and M. T. Newhouse. Aerosol therapy in infants and toddlers: past, present and future. Expert Rev. Respir. Med. 2(5):597–605, 2008.CrossRefPubMedGoogle Scholar
  2. 2.
    Attinger, E., R. G. Monroe, and M. S. Segal. The mechanics of breathing in different body positions. I. In normal subjects. J. Clin. Investig., 35(8):904–911, 1956.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Burri, P. H. Structural aspects of postnatal lung development---Alveolar formation and growth. Biol. Neonate, 89(4):313–322, 2006.CrossRefPubMedGoogle Scholar
  4. 4.
    Carrigy, N. B., C. A. Ruzycki, L. Golshahi, and W. H. Finlay. Pediatric in vitro and in silico models of deposition via oral and nasal inhalation. J. Aerosol Med. Pulm. Drug Deliv., 27(3):149–169, 2014.CrossRefPubMedGoogle Scholar
  5. 5.
    Choi, J., M. H. Tawhai, E. A. Hoffman, and C.-L. L. Lin. On intra- and intersubject variabilities of airflow in the human lungs. Phys. Fluids, 21(10):101901-1–17, 2009.Google Scholar
  6. 6.
    Comer, J. K., C. Kleinstreuer, C. S. Kim. Flow structures and particle deposition patterns in double-bifurcation airway models. Part 2. Aerosol transport and deposition. J. Fluid Mech., 435:55–80, 2001.Google Scholar
  7. 7.
    Comerford, A., C. Förster, and W. A. Wall. Structured tree impedance outflow boundary conditions for 3D lung simulation. J. Biomech. Eng., 132(8):081002:1–10, 2010.Google Scholar
  8. 8.
    Croteau, J. R., and C. D. Cook. Volume-pressure and length-tension measurements in human tracheal and bronchial segments. J. Appl. Physiol., 16:170–172, 1961.CrossRefPubMedGoogle Scholar
  9. 9.
    D’Angelo, E., E. Calderini, G. Torri, F. M. Robatto, D. Bono, and J. Milic-Emili. Respiratory mechanics in anesthetized paralyzed humans: effects of flow, volume, and time. J. Appl. Physiol., 67(6):2556–2564, 1989.CrossRefPubMedGoogle Scholar
  10. 10.
    De Backer, J. W., W. G. Vos, C. D. Gorlé, P. Germonpré, B. Partoens, F. L. Wuyts, P. M. Parizel, and W. De Backer. Flow analyses in the lower airways: patient-specific model and boundary conditions. Med. Eng. Phys., 30(7):872–879, 2008.CrossRefPubMedGoogle Scholar
  11. 11.
    Dubois, A. B., S. Y. Botelho, and J. H. Comroe. A new method for measuring airway resistance in man using a body plethysmograph: values in normal subjects and in patients with respiratory disease. J. Clin. Investig., 35(3):327–335, 1956.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Esmaily Moghadam, M., Y. Basikevs, and A. L. Marsden. A new preconditioning technique for implicitly coupled multidomain simulations with applications to hemodynamics. Comput. Mech., 52:1141–1152, 2013.CrossRefGoogle Scholar
  13. 13.
    Esmaily Moghadam, M., Y. Bazilevs, T.-Y. Hsia, I. E. Vignon-Clementel, A. L. Marsden, and Alliance (MOCHA). A comparison of outlet boundary treatments for prevention of backflow divergence with relevance to blood flow simulations. Comput. Mech., 48(3):277–291, 2011.CrossRefGoogle Scholar
  14. 14.
    Esmaily Moghadam, M., I. E. Vignon-Clementel, R. Figliola, and A. L. Marsden. A modular numerical method for implicit 0D/3D coupling in cardiovascular finite element simulations. J. Comput. Phys., 244:63–79, 2013.CrossRefGoogle Scholar
  15. 15.
    Ginsberg, G., B. Foos, R. B. Dzubow, and M. Firestone. Options for incorporating children’s inhaled dose into human health risk assessment. Inhal. Toxicol., 22(8):627–647, 2010.CrossRefPubMedGoogle Scholar
  16. 16.
    Godfrey, S., P. L. Kamburoff, and J. R. Nairn. Spirometry, lung volumes and airway resistance in normal children aged 5 to 18 years. Br. J. Dis. Chest, 64(1):15–24, 1970.CrossRefPubMedGoogle Scholar
  17. 17.
    Hall, G. L., Z. Hantos, F. Petak, J. H. Wildhaber, K. Tiller, P. R. Burton, and P. D. Sly. Airway and respiratory tissue mechanics in normal infants. Am. J. Respir. Crit. Care Med., 162:1397–1402, 2000.CrossRefPubMedGoogle Scholar
  18. 18.
    Hofmann, W. Mathematical model for the postnatal growth of the human lung. Respir. Physiol., 49:115–129, 1982.CrossRefPubMedGoogle Scholar
  19. 19.
    Horsfield, K., G. Dart, D. E. Olson, G. F. Filley, and G. Cumming. Models of the human bronchial tree. J. Appl. Physiol., 31(2):207–217, 1971.CrossRefPubMedGoogle Scholar
  20. 20.
    Horsfield, K., W. I. Gordon, W. Kemp, and S. Phillips. Growth of the bronchial tree in man. Thorax, 42:383–388, 1987.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Kaczka, D. W., K. R. Lutchen, and Z. Hantos. Emergent behavior of regional heterogeneity in the lung and its effects on respiratory impedance. J. Appl. Physiol., 110(5):1473–1481, 2011.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Kleinstreuer C., and Z. Zhang. Airflow and particle transport in the human respiratory system. Annu. Rev. Fluid Mech., 42(1):301–334, 2010.CrossRefGoogle Scholar
  23. 23.
    Koullapis, P. G., S. C. Kassinos, M. P. Bivolarova, and A. K. Melikov. Particle deposition in a realistic geometry of the human conducting airways: Effects of inlet velocity profile, inhalation flowrate and electrostatic charge. J. Biomech., 49:2201–2212, 2016.CrossRefPubMedGoogle Scholar
  24. 24.
    Kruger, S. J., S. K. Nagle, M. J. Couch, Y. Ohno, M. Albert, and S. B. Fain. Functional imaging of the lungs with gas agents. J. Magn. Reson. Imaging, 43(2):295–315, 2016.CrossRefPubMedGoogle Scholar
  25. 25.
    Kuprat, A. P., S. Kabilan, J. P. Carson, R. A. Corley, and D. R. Einstein. A bidirectional coupling procedure applied to multiscale respiratory modeling. J. Comput. Phys., 244:148–167, 2013.CrossRefGoogle Scholar
  26. 26.
    Lanteri C. J., and P. D. Sly. Changes in respiratory mechanics with age. J. Appl. Physiol., 74(1):369–378, 1993.CrossRefPubMedGoogle Scholar
  27. 27.
    Ma B., and K. R. Lutchen. An anatomically based hybrid computational model of the human lung and its application to low frequency oscillatory mechanics. Ann. Biomed. Eng., 34(11):1691–1704, 2006.CrossRefPubMedGoogle Scholar
  28. 28.
    Ma, B., and K. R. Lutchen. CFD simulation of aerosol deposition in an anatomically based human large-medium airway model. Ann. Biomed. Eng., 37(2):271–85, 2009.CrossRefPubMedGoogle Scholar
  29. 29.
    Ménache, M. G., W. Hofmann, B. Ashgarian, and F. J. Miller. Airway geometry models of children’s lungs for use in dosimetry modeling. Inhal. Toxicol., 20(2):101–126, 2008.CrossRefPubMedGoogle Scholar
  30. 30.
    Miyawaki, S., S. Choi, E. A. Hoffman, and C. L. Lin. A 4DCT imaging-based breathing lung model with relative hysteresis. J. Comput. Phys., 326:76–90, 2016.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Morris, P. D., A. Narracott, H. von Tengg-Kobligk, D. A. Silva Soto, S. Hsiao, A. Lungu, P. Evans, N. W. Bressloff, P. V. Lawford, D. R. Hose, and J. P. Gunn. Computational fluid dynamics modelling in cardiovascular medicine. Heart, 102:18–28, 2016.CrossRefPubMedGoogle Scholar
  32. 32.
    Oakes, J. M., A. L. Marsden, C. Grandmont, C. Darquenne, and I. E. Vignon-Clementel. Distribution of aerosolized particles in healthy and emphysematous rat lungs: comparison between experimental and numerical studies. J. Biomech., 48(6):1147–1157, 2015.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Oakes, J. M., A. L. Marsden, C. Grandmont, S. C. Shadden, C. Darquenne, and I. E. Vignon-Clementel. Airflow and particle deposition simulations in health and emphysema: from in vivo to in silico animal experiments. Ann. Biomed. Eng., 42(4):899–914, 2014.CrossRefPubMedGoogle Scholar
  34. 34.
    Oakes, J. M., M. Scadeng, E. C. Breen, A. L. Marsden, and C. Darquenne. Rat airway morhometry measured from in-situ MRI-based geometric models. J. Appl. Physiol., 112:1921–1931, 2012.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Oakes, J. M., S. C. Shadden, C. Grandmont, and I. E. Vignon-clementel. Aerosol transport throughout inspiration and expiration in the pulmonary airways. Int. J. Numer. Method Biomed. Eng., e2847, 2017.Google Scholar
  36. 36.
    Pedley, T. J., R. C. Schroter, and M. F. Sudlow. The prediction of pressure drop and variation of resistance within the human bronchial airways. Respir. Physiol., 9(3):387–405, 1970.CrossRefPubMedGoogle Scholar
  37. 37.
    Persak, S. C., S. Sin, J. M. McDonough, R. Arens, and D. M. Wootton. Noninvasive estimation of pharyngeal airway resistance and compliance in children based on volume-gated dynamic MRI and computational fluid dynamics. J. Appl. Physiol., 111(6):1819–1827, 2011.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Phalen R. F., and M. J. Oldham. Methods for modeling particle deposition as a function of age. Respir. Physiol., 128:119–130, 2001.CrossRefPubMedGoogle Scholar
  39. 39.
    Phalen, R. F., M. J. Oldham, C. B. Beaucage, T. Timothy Crocker, and J. D. Mortensen. Postnatal enlargement of human tracheobronchial airways and implications for particle deposition. Anat. Rec., 212:368–380, 1985.CrossRefPubMedGoogle Scholar
  40. 40.
    Sá, R. C., M. V. Cronin, A. C. Henderson, S. Holverda, R. J. Theilmann, T. J. Arai, D. J. Dubowitz, S. R. Hopkins, R. B. Buxton, and G. K. Prisk. Vertical distribution of specific ventilation in normal supine humans measured by oxygen-enhanced proton MRI. J. Appl. Physiol., 109(6):1950–1959, 2010.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Tenenbaum-Katan, J., P. Hofemeier, and J. Sznitman. Computational models of inhalation therapy in early childhood: therapeutic aerosols in the developing acinus. J. Aerosol Med. Pulm. Drug Deliv., 29:288–298, 2016.CrossRefGoogle Scholar
  42. 42.
    Tian, G., P. W. Longest, G. Su, R. L. Walenga, and M. Hindle. Development of a stochastic individual path (SIP) model for predicting the tracheobronchial deposition of pharmaceutical aerosols: effects of transient inhalation and sampling the airways. J. Aerosol Sci., 42(11):781–799, 2011.CrossRefGoogle Scholar
  43. 43.
    Updegrove, A., N. M. Wilson, J. Merkow, H. Lan, A. L. Marsden, and S. C. Shadden. SimVascular: an open source pipeline for cardiovascular simulation. Ann. Biomed. Eng., 45:525–541, 2017.CrossRefPubMedGoogle Scholar
  44. 44.
    Xi, J., A. Berlinski, Y. Zhou, B. Greenberg, and X. Ou. Breathing resistance and ultrafine particle deposition in nasal-laryngeal airways of a newborn, an infant, a child, and an adult. Ann. Biomed. Eng., 40(12):2579–2595, 2012.CrossRefPubMedGoogle Scholar
  45. 45.
    Zhang, Z., and C. Kleinstreuer. Transient airflow structures and particle transport in a sequentially branching lung airway model. Phys. Fluids, 14(2):862–880, 2002.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2017

Authors and Affiliations

  1. 1.Department of BioengineeringNortheastern UniversityBostonUSA
  2. 2.Department of Mechanical EngineeringUniversity of California, BerkeleyBerkeleyUSA

Personalised recommendations