Skip to main content

Development of a Novel Technique to Record 3D Intersegmental Angular Kinematics During Dynamic Spine Movements


A novel method of recording intersegmental spine kinematics was developed. The method was required to: (1) have similar accuracy and precision as current methods that record gross spine kinematics; (2) be reasonably insensitive to errors associated with marker detection or misplacement; and (3) be reasonably insensitive to skin movement artefacts. Four healthy participants performed trunk flexion, lateral bending, and axial twist movements; data were collected using the intersegmental method as well as electromagnetic sensors. Comparing methods, gross angular kinematic differences were within 1 SD during flexion and lateral bend, while axial twist resulted in the largest differences. To test sensitivity to marker error, random error was added to marker positions. The most proximal and distal intersegmental units were the most sensitive to marker error. Adding additional markers at the ends or interpolating padded markers reduced this sensitivity. The influence of skin movement artefact was investigated by digitizing locations of the skin with respect to the spinous processes in both neutral and fully flexed postures. In the lumbar region, large skin artefacts had minimal effect on intersegmental angles. The greatest strength of this method is the ability to dynamically record intersegmental spine kinematics.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7



Anterior/posterior axis


Cardan angle about the superior/inferior axis


7th cervical vertebrae


Cardan angle about the mediolateral axis


Cardan angle about the anterior/posterior axis


Local coordinate system


1st sacral vertebrae


Mediolateral axis


Superior/inferior axis


12th thoracic vertebrae


  1. Adams, M. A., and W. C. Hutton. Prolapsed intervertebral disc. A hyperflexion injury 1981 Volvo Award in Basic Science. Spine 7(3):184–191, 1982.

    Article  CAS  PubMed  Google Scholar 

  2. Adams, M. A., W. C. Hutton, and J. R. Stott. The resistance to flexion of the lumbar intervertebral joint. Spine 5(3):245–253, 1980.

    Article  CAS  PubMed  Google Scholar 

  3. Ahmadi, A., N. Maroufi, H. Behtash, H. Zekavat, and M. Parnianpour. Kinematic analysis of dynamic lumbar motion in patients with lumbar segmental instability using digital videofluoroscopy. Eur. Spine J. 18(11):1677–1685, 2009.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Beaudette, S., D. P. Zwambag, L. R. Bent, and S. H. M. Brown. Spine postural change elicits localized skin structural deformation of the trunk dorsum in vivo. J. Mech. Behav. Biomed. Mater. 67:31–39, 2017.

    Article  PubMed  Google Scholar 

  5. Campbell-Kyureghyan, N., M. Jorgensen, D. Burr, and W. Marras. The prediction of lumbar spine geometry: method development and validation. Clin. Biomech. 20(5):455–464, 2005.

    Article  Google Scholar 

  6. Cholewicki, J., and S. M. McGill. Lumbar posterior ligament involvement during extremely heavy lifts estimated from fluoroscopic measurements. J. Biomech. 25(1):17–28, 1992.

    Article  CAS  PubMed  Google Scholar 

  7. Cholewicki, J., and S. M. McGill. Mechanical stability of the in vivo lumbar spine: implications for injury and chronic low back pain. Clin. Biomech. 11(1):1–15, 1996.

    Article  CAS  Google Scholar 

  8. Cloud, B. A., K. D. Zhao, R. Breighner, H. Giambini, and K. An. Agreement between fibre optic and optoelectronic systems for quantifying sagittal plane spinal curvature in sitting. Gait Posture. 40(3):369–374, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Crisco, J. J., and M. M. Panjabi. Euler stability of the human ligamentous lumbar spine. Part I: Theory. Clin. Biomech. 7(1):19–26, 1992.

    Article  Google Scholar 

  10. Crisco, J. J., M. M. Panjabi, I. Yamamoto, and T. R. Oxland. Euler stability of the human ligamentous lumbar spine. Part II: Experiment. Clin. Biomech. 7(1):27–32, 1992.

    Article  CAS  Google Scholar 

  11. Farfan, H. F. Mechanical Disorders of the Low Back. Philadelphia: Lea & Febiger, p. 247, 1973.

    Google Scholar 

  12. Granata, K. P., and P. Gottipati. Fatigue influences the dynamic stability of the torso. Ergonomics 51(8):1258–1271, 2008.

    Article  CAS  PubMed  Google Scholar 

  13. Gunning, J. L., J. P. Callaghan, and S. M. McGill. Spinal posture and prior loading history modulate compressive strength and type of failure in the spine: a biomechanical study using a porcine cervical spine model. Clin. Biomech. 16(6):471–480, 2001.

    Article  CAS  Google Scholar 

  14. Howarth, S. J. Comparison of two methods of measuring spine angular kinematics during dynamic flexion movements: skin-mounted markers compared with markers affixed to rigid bodies. J. Manip. Physiol. Ther. 37(9):688–695, 2014.

    Article  Google Scholar 

  15. Iatridis, J. C., P. L. Mente, I. A. Stokes, D. D. Aronsson, and M. Alini. Compression-induced changes in intervertebral disc properties in a rat tail model. Spine 24(10):996–1002, 1999.

    Article  CAS  PubMed  Google Scholar 

  16. Jin, S., X. Ning, and G. A. Mirka. An algorithm for defining the onset and cessation of the flexion–relaxation phenomenon in the low back musculature. J. Electromyogr. Kinesiol. 22(3):376–382, 2012.

    Article  PubMed  Google Scholar 

  17. Mahallati, S., H. Rouhani, R. Preuss, K. Masani, and M. R. Popovic. Multisegment kinematics of the spinal column: soft tissue artifacts assessment. J. Biomech. Eng. 138(7):1–8, 2016.

    Article  Google Scholar 

  18. McGill, S. M., and J. Cholewicki. Biomechanical basis for stability: an explanation to enhance clinical utility. J. Orthop. Sports Phys. Ther. 31(2):96–100, 2001.

    Article  CAS  PubMed  Google Scholar 

  19. McGill, S. M., and V. Kippers. Transfer of loads between lumbar tissues during the flexion–relaxation phenomenon. Spine 19(19):2190–2196, 1994.

    Article  CAS  PubMed  Google Scholar 

  20. Mok, N. W., S. G. Brauer, and P. W. Hodges. Changes in lumbar movement in people with low back pain are related to compromised balance. Spine 36(1):E45–E52, 2011.

    Article  PubMed  Google Scholar 

  21. Morris, J. M., D. B. Lucas, and B. Bresler. Role of the trunk in stability of the spine. J. Bone Jt. Surg. Am. 43(4):327–351, 1961.

    Article  Google Scholar 

  22. Nelson, J. M., R. P. Walmsley, and J. M. Stevenson. Relative lumbar and pelvic motion during loaded spinal flexion/extension. Spine 20(2):199–204, 1995.

    Article  CAS  PubMed  Google Scholar 

  23. Panjabi, M. M. The stabilizing system of the spine. Part 1. Function, dysfunction, adaption, and enhancement. J. Spinal Dis. 5(4):383–389, 1992.

    Article  CAS  Google Scholar 

  24. Panjabi, M. M., K. Abumi, J. Duranceau, and T. Oxland. Spinal stability and intersegment muscle forces. A biomechanical model. Spine 14(2):194–200, 1989.

    Article  CAS  PubMed  Google Scholar 

  25. Pearcy, M. J., and R. J. Hindle. New method for the non-invasive three-dimensional measurement of human back movement. Clin. Biomech. 4(1):73–79, 1989.

    Article  CAS  Google Scholar 

  26. Preuss, R., and J. Fung. Can acute low back pain result from segmental spinal buckling during submaximal activities? A review of the literature. Manual Ther. 10(1):14–20, 2005.

    Article  Google Scholar 

  27. Preuss, R., and M. R. Popovic. Three-dimensional spine kinematics during multidirectional, target-directed trunk movement in sitting. J. Electromyogr. Kinesiol. 20(5):823–832, 2010.

    Article  PubMed  Google Scholar 

  28. Ross, G. B., P. J. Sheahan, B. Mahoney, B. J. Gurd, P. W. Hodges, and R. B. Graham. Pain catastrophizing moderates changes in spinal control in response to noxiously induced low back pain. J. Biomech. 58:64–70, 2017.

    Article  PubMed  Google Scholar 

  29. Saifuddin, A., S. Blease, and E. MacSweeney. Axial loaded MRI of the lumbar spine. Clin. Radiol. 58(9):661–671, 2003.

    Article  CAS  PubMed  Google Scholar 

  30. Schinkel-Ivy, A., and J. D. M. Drake. Which motion segments are required to sufficiently characterize the kinematic behaviour of the trunk? J. Electromyogr. Kinesiol. 25(2):239–246, 2015.

    Article  PubMed  Google Scholar 

  31. Shin, G., and G. A. Mirka. An in vivo assessment of the low back response to prolonged flexion: interplay between active and passive tissues. Clin. Biomech. 22(9):965–971, 2007.

    Article  Google Scholar 

  32. Shin, J., S. Wang, Q. Yao, K. B. Wood, and G. Li. Investigation of coupled bending of the lumbar spine during dynamic axial rotation of the body. Eur. Spine J. 22(12):2671–2677, 2013.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Sullivan, M. S., C. E. Dickinson, and J. D. Troup. The influence of age and gender on lumbar spine sagittal plane range of motion. A study of 1126 healthy subjects. Spine 19(6):682–686, 1994.

    Article  CAS  PubMed  Google Scholar 

  34. Swinkels, A., and P. Dolan. Regional assessment of joint position in the spine. Spine 23(5):590–597, 1998.

    Article  CAS  PubMed  Google Scholar 

  35. Teyhen, D. S., T. W. Flynn, J. D. Childs, T. R. Kuklo, M. K. Rosner, D. W. Polly, and L. D. Abraham. Fluoroscopic video to identify aberrant lumbar motion. Spine 32(7):E220–E229, 2007.

    Article  PubMed  Google Scholar 

  36. Yingling, V. R., J. P. Callaghan, and S. M. McGill. Dynamic loading affects the mechanical properties and failure site of porcine spines. Clin. Biomech. 12(5):301–305, 1997.

    Article  Google Scholar 

  37. Zemp, R., R. List, T. Gülay, J. P. Elsig, J. Naxera, W. R. Taylor, and S. Lorensetti. Soft tissue artefacts of the human back: comparison of sagittal curvature of the spine measured using skin markers and an open upright MRI. PLoS ONE 9(4):e95426, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

Download references


The authors would like to acknowledge the Natural Sciences and Engineering Research Council (NSERC) of Canada for funding.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Stephen H. M. Brown.

Additional information

Associate Editor Dan Elson oversaw the review of this article.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zwambag, D.P., Beaudette, S.M., Gregory, D.E. et al. Development of a Novel Technique to Record 3D Intersegmental Angular Kinematics During Dynamic Spine Movements. Ann Biomed Eng 46, 298–309 (2018).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Biomechanics
  • Curvature
  • Electromagnetic
  • Intervertebral
  • Lumbar
  • Motion
  • Movement
  • Multisegment
  • Thoracic
  • Model