Skip to main content
Log in

AngleNav: MEMS Tracker to Facilitate CT-Guided Puncture

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

As a low-cost needle navigation system, AngleNav may be used to improve the accuracy, speed, and ease of CT-guided needle punctures. The AngleNav hardware includes a wireless device with a microelectromechanical (MEMS) tracker that can be attached to any standard needle. The physician defines the target, desired needle path and skin entry point on a CT slice image. The accuracy of AngleNav was first tested in a 3D-printed calibration platform in a benchtop setting. An abdominal phantom study was then performed in a CT scanner to validate the accuracy of the device’s angular measurement. Finally, an in vivo swine study was performed to guide the needle towards liver targets (n = 8). CT scans of the targets were used to quantify the angular errors and needle tip-to-targeting distance errors between the planned needle path and the final needle position. The MEMS tracker showed a mean angular error of 0.01° with a standard deviation (SD) of 0.62° in the benchtop setting. The abdominal phantom test showed a mean angular error of 0.87° with an SD of 1.19° and a mean tip-to-target distance error of 4.89 mm with an SD of 1.57 mm. The animal experiment resulted in a mean angular error of 6.6° with an SD of 1.9° and a mean tip-to-target distance error of 8.7 mm with an SD of 3.1 mm. These results demonstrated the feasibility of AngleNav for CT-guided interventional workflow. The angular and distance errors were reduced by 64.4 and 54.8% respectively if using AngleNav instead of freehand insertion, with a limited number of operators. AngleNav assisted the physicians to deliver accurate needle insertion during CT-guided intervention. The device could potentially reduce the learning curve for physicians to perform CT-guided needle targeting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Abolhassani, N., R. V. Patel, and F. Ayazi. Minimization of needle deflection in robot-assisted percutaneous therapy. Int. J. Med. Robot. 3(2):140–148, 2007.

    Article  PubMed  Google Scholar 

  2. Amin, Z., J. J. Donald, A. Masters, R. Kant, A. C. Steger, S. G. Bown, and W. R. Lees. Hepatic metastases: interstitial laser photocoagulation with real-time US monitoring and dynamic CT evaluation of treatment. Radiology 187(2):339–347, 1993.

    Article  CAS  PubMed  Google Scholar 

  3. Bartling S., Kachelrieß, M., Kuntz, J., Gupta, R., Walsh, C. Wang, I. S. CT-guided interventions: current practice and future directions. In: Intraoperative imaging and image-guided therapy, edited by F. A. Jolesz. Newyork: Springer, 2014.

    Google Scholar 

  4. Brown, K. T., G. I. Getrajdman, and J. F. Botet. Clinical trial of the Bard CT guide system. J. Vasc. Interv. Radiol. 6(3):405–410, 1995.

    Article  CAS  PubMed  Google Scholar 

  5. CAScination. CAS-ONE Liver, 2017. http://www.cascination.com/products/cas-one-liver/. Accessed 16 October 2017.

  6. Chellathurai, A., S. Kanhirat, K. Chokkappan, T. S. Swaminathan, and N. Kulasekaran. Technical note: CT-guided biopsy of lung masses using an automated guiding apparatus. Indian J. Radiol. Imaging 19(3):206–207, 2009.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Cobb, J., J. Henckel, P. Gomes, and S. Harris. Hands-on robotic unicompartmental knee replacement. Bone Joint 88:188–197, 2006.

    Article  CAS  Google Scholar 

  8. Daly, B., and P. A. Templeton. Real-time CT fluoroscopy: evolution of an interventional tool. Radiology 211(2):309–315, 1999.

    Article  CAS  PubMed  Google Scholar 

  9. Dou, H., S. Jiang, Z. Yang, L. Sun, X. Ma, and B. Huo. Design and validation of a CT-guided robotic system for lung cancer brachytherapy. Med. Phys. 44(9):4828–4837, 2017.

    Article  PubMed  Google Scholar 

  10. Fichtinger, G., J. P. Fiene, C. W. Kennedy, G. Kronreif, I. Iordachita, D. Y. Song, E. C. Burdette, and P. Kazanzides. Robotic assistance for ultrasound-guided prostate brachytherapy. Med. Image Anal. 12(5):535–545, 2008.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Frederick, P. R., T. H. Brown, M. H. Miller, A. L. Bahr, and K. H. Taylor. A light-guidance system to be used for CT-guided biopsy. Radiology 154(2):535–536, 1985.

    Article  CAS  PubMed  Google Scholar 

  12. Froelich, J. J., B. Saar, M. Hoppe, N. Ishaque, E. M. Walthers, and J. Regn. Real-time Ct-fluoroscopy for guidance of percutaneous drainage procedures. J. Vasc. Interv. Radiol. 9(5):735–740, 1998.

    Article  CAS  PubMed  Google Scholar 

  13. Gangi, A., B. Kastler, J. M. Arhan, A. Klinkert, J. M. Grampp, and J. L. Dietemann. A compact laser beam guidance system for interventional CT. J. Comput. Assist. Tomogr. 18(2):326–328, 1994.

    Article  CAS  PubMed  Google Scholar 

  14. Glossop, N. D. Advantages of optical compared with electromagnetic tracking. JBJS 91(Supplement_1):23–28, 2009.

    Article  Google Scholar 

  15. GmbH ASTS. Quick and uncomplicated CT-guided interventions on the highest level with 3D-LNS, 2017. http://www.amedo-gmbh.com/index.php/en/. Accessed 16 October 2017.

  16. Grasso, R. F., E. Faiella, G. Luppi, E. Schena, F. Giurazza, R. Del Vescovo, F. D’Agostino, R. L. Cazzato, and B. B. Zobel. Percutaneous lung biopsy: comparison between an augmented reality CT navigation system and standard CT-guided technique. Int. J. Comput. Assist. Radiol. Surg. 8(5):837–848, 2013.

    Article  CAS  PubMed  Google Scholar 

  17. Gupta, A., M. E. Allaf, L. R. Kavoussi, T. W. Jarrett, D. Y. Chan, L.-M. Su, and S. B. Solomon. Computerized tomography guided percutaneous renal cryoablation with the patient under conscious sedation: initial clinical experience. J. Urol. 175(2):447–453, 2006.

    Article  PubMed  Google Scholar 

  18. Haaga, J. R., and R. J. Alfidi. Precise biopsy localization by computer tomography. Radiology 118(3):603–607, 1976.

    Article  CAS  PubMed  Google Scholar 

  19. Haaga, J. R., R. J. Alfidi, T. R. Havrilla, A. M. Cooperman, F. E. Seidelmann, and N. E. Reich. CT detection and aspiration of abdominal abscesses. AJR 128(3):465–474, 1977.

    Article  CAS  PubMed  Google Scholar 

  20. Hassfeld, S., and J. Mühling. Comparative examination of the accuracy of a mechanical and an optical system in CT and MRT based instrument navigation. Int. J. Oral Maxillofac. Surg. 29(6):400–407, 2000.

    Article  CAS  PubMed  Google Scholar 

  21. Howard, M. H., and R. C. Nelson. An electronic device for needle placement during sonographically guided percutaneous intervention. Radiology 218(3):905–911, 2001.

    Article  CAS  PubMed  Google Scholar 

  22. Hruby, W., and H. Muschik. Belt device for simplified CT-guided puncture and biopsy: a technical note. Cardiovasc. Intervent. Radiol. 10(5):301–302, 1987.

    Article  CAS  PubMed  Google Scholar 

  23. Jacobi, V., A. Thalhammer, and J. Kirchner. Value of a laser guidance system for CT interventions: a phantom study. Eur. Radiol. 9(1):137–140, 1999.

    Article  CAS  PubMed  Google Scholar 

  24. Jakopec, M., F. Baena, and S. J. Harris. The hands-on orthopaedic robot “Acrobot”: early clinical trials of total knee replacement surgery. IEEE Trans. Robot. 19(5):902–911, 2003.

    Article  Google Scholar 

  25. Kettenbach, J., L. Kara, G. Toporek, M. Fuerst, and G. Kronreif. A robotic needle-positioning and guidance system for CT-guided puncture: ex vivo results. Minim. Invasive Ther. Allied Technol. 23(5):271–278, 2014.

    Article  PubMed  Google Scholar 

  26. Kim, E., T. J. Ward, R. S. Patel, A. M. Fischman, S. Nowakowski, and R. A. Lookstein. CT-guided liver biopsy with electromagnetic tracking: results from a single-center prospective randomized controlled trial. AJR 203(6):W715–W723, 2014.

    Article  PubMed  Google Scholar 

  27. Kloeppel, R., T. Weisse, F. Deckert, W. Wilke, and S. Pecher. CT-guided intervention using a patient laser marker system. Eur. Radiol. 10(6):1010–1014, 2000.

    Article  CAS  PubMed  Google Scholar 

  28. Krombach, G. A., and A. Mahnken. US-guided nephrostomy with the aid of a magnetic field-based navigation device in the porcine pelvicaliceal system. J. Vasc. Interv. Radiol. 12(5):623–628, 2001.

    Article  CAS  PubMed  Google Scholar 

  29. Leschka, S. C., D. Babic, S. El Shikh, C. Wossmann, M. Schumacher, and C. A. Taschner. C-arm cone beam computed tomography needle path overlay for image-guided procedures of the spine and pelvis. Neuroradiology 54(3):215–223, 2012.

    Article  PubMed  Google Scholar 

  30. Ltd PHP. MAXIO is a USFDA 510(k) approved device, 2017. http://www.perfinthealthcare.com/MaxioOverview.asp. Accessed 16 October 2017.

  31. Martinez, R. M., W. Ptacek, W. Schweitzer, G. Kronreif, M. Fürst, M. J. Thali, and L. C. Ebert. CT-guided, minimally invasive, postmortem needle biopsy using the B-rob II needle-positioning robot. J. Forens. Sci. 59(2):517–521, 2014.

    Article  Google Scholar 

  32. Mbalisike, E. C., T. J. Vogl, S. Zangos, K. Eichler, P. Balakrishnan, and J. Paul. Image-guided microwave thermoablation of hepatic tumours using novel robotic guidance: an early experience. Eur. Radiol. 25(2):454–462, 2015.

    Article  PubMed  Google Scholar 

  33. Miaux, Y., A. Guermazi, D. Gossot, P. Bourrier, D. Angoulvant, A. Khairoune, C. Turki, and E. Bouche. Laser guidance system for CT-guided procedures. Radiology 194(1):282–284, 1995.

    Article  CAS  PubMed  Google Scholar 

  34. Moser, C., J. Becker, M. Deli, M. Busch, M. Boehme, and D. H. W. Groenemeyer. A novel laser navigation system reduces radiation exposure and improves accuracy and workflow of CT-guided spinal interventions: a prospective, randomized, controlled, clinical trial in comparison to conventional freehand puncture. Eur. J. Radiol. 82(4):627–632, 2013.

    Article  PubMed  Google Scholar 

  35. NeoRad. SimpliCT, 2017. http://neorad.no/products_1/simplict_for_ct_and_pet_ct/. Accessed 16 October 2017.

  36. N.V.K.P.EPIQ PercuNav, 2017. https://www.philips.co.in/healthcare/product/HCNOCTN150/epiq-percunav-premium-fusion-and-navigation. Accessed 16 October 2017.

  37. Onik, G., E. R. Cosman, T. H. Wells, Jr, H. I. Goldberg, A. A. Moss, P. Costello, R. A. Kane, W. I. Hoddick, and B. Demas. CT-guided aspirations for the body: comparison of hand guidance with stereotaxis. Radiology 166(2):389–394, 1988.

    Article  CAS  PubMed  Google Scholar 

  38. Onik, G., P. Costello, E. Cosman, T. Wells, Jr, H. Goldberg, A. Moss, R. Kane, M. E. Clouse, W. Hoddick, S. Moore, et al. CT body stereotaxis: an aid for CT-guided biopsies. AJR 146(1):163–168, 1986.

    Article  CAS  PubMed  Google Scholar 

  39. Ozdoba, C., K. Voigt, and F. Nusslin. New device for CT-targeted percutaneous punctures. Radiology 180(2):576–578, 1991.

    Article  CAS  PubMed  Google Scholar 

  40. Palestrant, A. M. Comprehensive approach to CT-guided procedures with a hand-held guidance device. Radiology 174(1):270–272, 1990.

    Article  CAS  PubMed  Google Scholar 

  41. Penzkofer, T., P. Bruners, P. Isfort, F. Schoth, R. W. Gunther, T. Schmitz-Rode, and A. H. Mahnken. Free-hand CT-based electromagnetically guided interventions: accuracy, efficiency and dose usage. Minim. Invasive. Ther. Allied Technol. 20(4):226–233, 2011.

    Article  PubMed  Google Scholar 

  42. Pereles, F. S., M. Baker, R. Baldwin, E. Krupinski, and E. C. Unger. Accuracy of CT biopsy: laser guidance versus conventional freehand techniques. Acad. Radiol. 5(11):766–770, 1998.

    Article  CAS  PubMed  Google Scholar 

  43. Reyes, G. D. A guidance device for CT-guided procedures. Radiology 176(3):863–864, 1990.

    Article  CAS  PubMed  Google Scholar 

  44. Ryan, E. R., C. T. Sofocleous, H. Schöder, J. A. Carrasquillo, S. Nehmeh, S. M. Larson, R. Thornton, R. H. Siegelbaum, J. P. Erinjeri, and S. B. Solomon. Split-dose technique for FDG PET/CT–guided percutaneous ablation: a method to facilitate lesion targeting and to provide immediate assessment of treatment effectiveness. Radiology 268(1):288–295, 2013.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Schulz, B., K. Eichler, P. Siebenhandl, T. Gruber-Rouh, C. Czerny, T. J. Vogl, and S. Zangos. Accuracy and speed of robotic assisted needle interventions using a modern cone beam computed tomography intervention suite: a phantom study. Eur. Radiol. 23(1):198–204, 2013.

    Article  PubMed  Google Scholar 

  46. Silverman, S. G., K. Tuncali, D. F. Adams, R. D. Nawfel, K. H. Zou, and P. F. Judy. CT fluoroscopy-guided abdominal interventions: techniques, results, and radiation exposure. Radiology 212(3):673–681, 1999.

    Article  CAS  PubMed  Google Scholar 

  47. Tselikas, L., J. Joskin, F. Roquet, G. Farouil, S. Dreuil, A. Hakimé, C. Teriitehau, A. Auperin, T. de Baere, and F. Deschamps. Percutaneous bone biopsies: comparison between flat-panel cone-beam CT and CT-scan guidance. Cardiovasc. Intervent. Radiol. 38(1):167–176, 2015.

    Article  PubMed  Google Scholar 

  48. Wile, G. E., J. R. Leyendecker, K. A. Krehbiel, R. B. Dyer, and R. J. Zagoria. CT and MR imaging after imaging-guided thermal ablation of renal neoplasms. Radiographics 27(2):325–339, 2007.

    Article  PubMed  Google Scholar 

  49. Wolf, F. J., D. J. Grand, J. T. Machan, T. A. DiPetrillo, W. W. Mayo-Smith, and D. E. Dupuy. Microwave ablation of lung malignancies: effectiveness, CT findings, and safety in 50 patients. Radiology 247(3):871–879, 2008.

    Article  PubMed  Google Scholar 

  50. Wunschik, F., M. Georgi, and O. Pastyr. Stereotactic biopsy using computed tomography. J. Comput. Assist. Tomogr. 8(1):32–37, 1984.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

NIH does not endorse or recommend any commercial products, processes, or services. The content of this manuscript does not necessarily reflect the views or policies of the Department of Health and Human Services, nor do mention of trade names, commercial products, or organizations imply endorsement by the USA Government. This work was supported by the Center for Interventional Oncology in the Intramural Research Program of the National Institutes of Health (NIH), grants 1ZIDBC011242 and 1ZIDCL040015.

Conflict of Interest

NIH and authors may own intellectual property in the field.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zion Tsz Ho Tse.

Additional information

Associate Editor Agata A. Exner oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, R., Xu, S., Pritchard, W.F. et al. AngleNav: MEMS Tracker to Facilitate CT-Guided Puncture. Ann Biomed Eng 46, 452–463 (2018). https://doi.org/10.1007/s10439-017-1968-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-017-1968-4

Keywords

Navigation