Annals of Biomedical Engineering

, Volume 46, Issue 3, pp 443–451 | Cite as

Engineering Analysis of Tricuspid Annular Dynamics in the Beating Ovine Heart

  • Manuel K. Rausch
  • Marcin Malinowski
  • Penny Wilton
  • Asghar Khaghani
  • Tomasz A. Timek


Functional tricuspid regurgitation is a significant source of morbidity and mortality in the US. Furthermore, treatment of functional tricuspid regurgitation is suboptimal with significant recurrence rates, which may, at least in part, be due to our limited knowledge of the relationship between valvular shape and function. Here we study the dynamics of the healthy in vivo ovine tricuspid annulus to improve our understanding of normal annular deformations throughout the cardiac cycle. To this end, we determine both clinical as well as engineering metrics of in vivo annular dynamics based on sonomicrometry crystals surgically attached to the annulus. We confirm that the tricuspid annulus undergoes large dynamic changes in area, perimeter, height, and eccentricity throughout the cardiac cycle. This deformation may be described as asymmetric in-plane motion of the annulus with minor out-of-plane motion. In addition, we employ strain and curvature to provide mechanistic insight into the origin of this deformation. Specifically, we find that strain and curvature vary considerable across the annulus with highly localized minima and maxima resulting in aforementioned configurational changes throughout the cardiac cycle. It is our hope that these data provide valuable information for clinicians and engineers alike and ultimately help us improve treatment of functional tricuspid regurgitation.


Functional tricuspid regurgitation Strain Curvature Sonomicrometry Splines 



This study was supported by an internal Grant from the Meijer Heart and Vascular Institute at Spectrum Health.

Conflict of interest

None of the authors have conflict of interest to report.

Supplementary material

10439_2017_1961_MOESM1_ESM.mp4 (3.2 mb)
Supplementary material 1 (MP4 3319 kb)
10439_2017_1961_MOESM2_ESM.mp4 (2.9 mb)
Supplementary material 2 (MP4 3005 kb)

Supplementary material 3 (MP4 3433 kb)


  1. 1.
    Amini Khoiy, K., and R. Amini. On the biaxial mechanical response of porcine tricuspid valve leaflets. J. Biomech. Eng. 138:104504, 2016.CrossRefGoogle Scholar
  2. 2.
    Amini Khoiy, K., D. Biswas, T. N. Decker, K. T. Asgarian, F. Loth, and R. Amini. Surface strains of porcine tricuspid valve septal leaflets measured in ex vivo beating hearts. J. Biomech. Eng. 138:111006, 2016.CrossRefGoogle Scholar
  3. 3.
    Baillargeon, B., I. Costa, J. R. Leach, L. C. Lee, M. Genet, A. Toutain, J. F. Wenk, M. K. Rausch, N. Rebelo, G. Acevedo-Bolton, E. Kuhl, J. L. Navia, and J. M. Guccione. Human cardiac function simulator for the optimal design of a novel annuloplasty ring with a sub-valvular element for correction of ischemic mitral regurgitation. Cardiovasc. Eng. Technol. 6:105–116, 2015.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Basu, A., and Z. He. Annulus tension on the tricuspid valve: an in-vitro study. Cardiovasc. Eng. Technol. 7:270–279, 2016.CrossRefPubMedGoogle Scholar
  5. 5.
    Bothe, W., E. Kuhl, J. P. E. Kvitting, M. K. Rausch, S. Göktepe, J. C. Swanson, S. Farahmandia, N. B. Ingels, and D. C. Miller. Rigid, complete annuloplasty rings increase anterior mitral leaflet strains in the normal beating ovine heart. Circulation 124:S81–S96, 2011.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Bothe, W., M. K. Rausch, J. P. E. Kvitting, D. K. Echtner, M. Walther, N. B. Ingels, E. Kuhl, and D. Craig Miller. How do annuloplasty rings affect mitral annular strains in the normal beating ovine heart? Circulation 126:S231–S238, 2012.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Chan, V., I. G. Burwash, B. K. Lam, T. Auyeung, A. Tran, T. G. Mesana, and M. Ruel. Clinical and echocardiographic impact of functional tricuspid regurgitation repair at the time of mitral valve replacement. Ann. Thorac. Surg. 88:1209–1215, 2009.CrossRefPubMedGoogle Scholar
  8. 8.
    Eckert, C. E., B. Zubiate, M. Vergnat, J. H. Gorman, R. C. Gorman, and M. S. Sacks. In vivo dynamic deformation of the mitral valve annulus. Ann. Biomed. Eng. 37:1757–1771, 2009.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Fawzy, H., K. Fukamachi, C. D. Mazer, A. Harrington, D. Latter, D. Bonneau, and L. Errett. Complete mapping of the tricuspid valve apparatus using three-dimensional sonomicrometry. J. Thorac. Cardiovasc. Surg. 141:1037–1043, 2011.CrossRefPubMedGoogle Scholar
  10. 10.
    Fukuda, S., A. M. Gillinov, P. M. McCarthy, W. J. Stewart, J. M. Song, T. Kihara, M. Daimon, M. S. Shin, J. D. Thomas, and T. Shiota. Determinants of recurrent or residual functional tricuspid regurgitation after tricuspid annuloplasty. Circulation 114:I-582–I-587, 2006.Google Scholar
  11. 11.
    Fukuda, S., G. Saracino, Y. Matsumura, M. Daimon, H. Tran, N. L. Greenberg, T. Hozumi, J. Yoshikawa, J. D. Thomas, and T. Shiota. Three-dimensional geometry of the tricuspid annulus in healthy subjects and in patients with functional tricuspid regurgitation a real-time, 3-dimensional echocardiographic study. Circulation 2006.  https://doiorg.10.1161/CIRCULATIONAHA.105.000257.Google Scholar
  12. 12.
    Gorman, J. H., R. C. Gorman, B. M. Jackson, Y. Enomoto, M. G. St. John-Sutton, and L. H. Edmunds. Annuloplasty ring selection for chronic ischemic mitral regurgitation: lessons from the ovine model. Ann. Thorac. Surg. 76:1556–1563, 2003.CrossRefPubMedGoogle Scholar
  13. 13.
    Gorman, J. H., R. C. Gorman, T. Plappert, B. M. Jackson, Y. Hiramatsu, M. G. St. John-Sutton, and L. H. Edmunds, Jr. Infarct size and location determine development of mitral regurgitation in the sheep model. J. Thorac. Cardiovasc. Surg. 115:615–622, 1998.CrossRefPubMedGoogle Scholar
  14. 14.
    Hiro, M. E., J. Jouan, M. R. Pagel, E. Lansac, K. H. Lim, H.-S. Lim, and C. M. Duran. Sonometric study of the normal tricuspid valve annulus in sheep. J. Heart Valve Dis. 13:452–460, 2004.PubMedGoogle Scholar
  15. 15.
    Jouan, J., M. R. Pagel, M. E. Hiro, K. H. Lim, E. Lansac, and C. M. G. Duran. Further information from a sonometric study of the normal tricuspid valve annulus in sheep: geometric changes during the cardiac cycle. J. Heart Valve Dis. 16:511–518, 2007.PubMedGoogle Scholar
  16. 16.
    Leng, S., M. Jiang, X. D. Zhao, J. C. Allen, G. S. Kassab, R. Z. Ouyang, J. Le Tan, B. He, R. S. Tan, and L. Zhong. Three-dimensional tricuspid annular motion analysis from cardiac magnetic resonance feature-tracking. Ann. Biomed. Eng. 44:3522–3538, 2016.CrossRefPubMedGoogle Scholar
  17. 17.
    Malinowski, M., A. G. Proudfoot, D. Langholz, L. Eberhart, M. Brown, H. Schubert, J. Wodarek, and T. A. Timek. Large animal model of functional tricuspid regurgitation in pacing induced end-stage heart failure. Interact. Cardiovasc. Thorac. Surg. 24:905–910, 2017.CrossRefPubMedGoogle Scholar
  18. 18.
    Malinowski, M., P. Wilton, A. Khaghani, M. Brown, D. Langholz, V. Hooker, L. Eberhart, R. L. Hooker, and T. A. Timek. The effect of acute mechanical left ventricular unloading on ovine tricuspid annular size and geometry. Interact. Cardiovasc. Thorac. Surg. 23:391–396, 2016.CrossRefPubMedGoogle Scholar
  19. 19.
    Malinowski, M., P. Wilton, A. Khaghani, D. Langholz, V. Hooker, L. Eberhart, R. L. Hooker, and T. A. Timek. The effect of pulmonary hypertension on ovine tricuspid annular dynamics. Eur. J. Cardio-thorac. Surg. 49:40–45, 2016.CrossRefGoogle Scholar
  20. 20.
    Mutlak, D., D. Aronson, J. Lessick, S. A. Reisner, S. Dabbah, and Y. Agmon. Functional tricuspid regurgitation in patients with pulmonary hypertension: is pulmonary artery pressure the only determinant of regurgitation severity? Chest 135:115–121, 2009.CrossRefPubMedGoogle Scholar
  21. 21.
    Nishi, H., K. Toda, S. Miyagawa, Y. Yoshikawa, S. Fukushima, M. Kawamura, D. Yoshioka, T. Saito, T. Ueno, T. Kuratani, and Y. Sawa. Tricuspid annular dynamics before and after tricuspid annuloplasty- three-dimensional transesophageal echocardiography. Circ. J. 79:873–879, 2015.CrossRefPubMedGoogle Scholar
  22. 22.
    Onoda, K., F. Yasuda, M. Takao, T. Shimono, K. Tanaka, H. Shimpo, and I. Yada. Long-term follow-up after Carpentier-Edwards ring annuloplasty for tricuspid regurgitation. Ann. Thorac. Surg. 70:796–799, 2000.CrossRefPubMedGoogle Scholar
  23. 23.
    Oren, M., O. Oren, A. Feldman, L. Bloch, and Y. Turgeman. Permanent lone atrial fibrillation and atrioventricular valve regurgitation: may the former lead to the latter? J. Heart Valve Dis. 23:759–764, 2014.PubMedGoogle Scholar
  24. 24.
    Rausch, M. K., W. Bothe, J. P. E. Kvitting, S. Göktepe, D. Craig Miller, and E. Kuhl. In vivo dynamic strains of the ovine anterior mitral valve leaflet. J. Biomech. 44:1149–1157, 2011.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Rausch, M. K., W. Bothe, J. P. E. Kvitting, J. C. Swanson, N. B. Ingels, D. C. Miller, and E. Kuhl. Characterization of mitral valve annular dynamics in the beating heart. Ann. Biomed. Eng. 39:1690–1702, 2011.CrossRefPubMedGoogle Scholar
  26. 26.
    Rausch, M. K., W. Bothe, J. P. E. Kvitting, J. C. Swanson, D. C. Miller, and E. Kuhl. Mitral valve annuloplasty: a quantitative clinical and mechanical comparison of different annuloplasty devices. Ann. Biomed. Eng. 40:750–761, 2012.CrossRefPubMedGoogle Scholar
  27. 27.
    Rausch, M. K., F. A. Tibayan, N. B. Ingels, D. C. Miller, and E. Kuhl. Mechanics of the mitral annulus in chronic ischemic cardiomyopathy. Ann. Biomed. Eng. 41:2171–2180, 2013.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Rausch, M. K., A. M. Zöllner, M. Genet, B. Baillargeon, W. Bothe, and E. Kuhl. A virtual sizing tool for mitral valve annuloplasty. Int. J. Numer. Method Biomed. Eng. 2017.  https://doiorg.10.1002/cnm.2788.PubMedGoogle Scholar
  29. 29.
    Ring, L., B. S. Rana, A. Kydd, J. Boyd, K. Parker, and R. A. Rusk. Dynamics of the tricuspid valve annulus in normal and dilated right hearts: a three-dimensional transoesophageal echocardiography study. Eur. Heart J. Cardiovasc. Imaging 13:756–762, 2012.CrossRefPubMedGoogle Scholar
  30. 30.
    Saeed, D., T. Kidambi, S. Shalli, B. Lapin, S. C. Malaisrie, R. Lee, W. G. Cotts, and E. C. McGee. Tricuspid valve repair with left ventricular assist device implantation: is it warranted? J. Heart Lung Transplant. 30:530–535, 2011.CrossRefPubMedGoogle Scholar
  31. 31.
    Salgo, I. S., J. H. Gorman, R. C. Gorman, B. M. Jackson, F. W. Bowen, T. Plappert, M. G. St John Sutton, and L. H. Edmunds. Effect of annular shape on leaflet curvature in reducing mitral leaflet stress. Circulation 106:711–717, 2002.CrossRefPubMedGoogle Scholar
  32. 32.
    Smith, D. Annulus Tension in the Tricuspid Valve: The Effects of Annulus Dilation and Papillary Muscle Movement. Thesis. 2012.Google Scholar
  33. 33.
    Spinner, E. M., D. Buice, C. H. Yap, and A. P. Yoganathan. The effects of a three-dimensional, saddle-shaped annulus on anterior and posterior leaflet stretch and regurgitation of the tricuspid valve. Ann. Biomed. Eng. 40:996–1005, 2012.CrossRefPubMedGoogle Scholar
  34. 34.
    Spinner, E. M., S. Lerakis, J. Higginson, M. Pernetz, S. Howell, E. Veledar, and A. P. Yoganathan. Erratum: correlates of tricuspid regurgitation as determined by 3d echocardiography: pulmonary arterial pressure, ventricle geometry, annular dilatation, and papillary muscle displacement. Circulation 5:43–45, 2012.PubMedGoogle Scholar
  35. 35.
    Tei, C., J. P. Pilgrim, P. M. Shah, J. A. Ormiston, and M. Wong. The tricuspid valve annulus: study of size and motion in normal subjects and in patients with tricuspid regurgitation. Circulation 66:665–672, 1982.CrossRefPubMedGoogle Scholar
  36. 36.
    Ton-Nu, T.-T., R. A. Levine, M. D. Handschumacher, D. J. Dorer, C. Yosefy, D. Fan, L. Hua, L. Jiang, and J. Hung. Geometric determinants of functional tricuspid regurgitation. Circulation 114:143–149, 2006.CrossRefPubMedGoogle Scholar
  37. 37.
    Zhou, X., Y. Otsuji, S. Yoshifuku, T. Yuasa, H. Zhang, K. Takasaki, K. Matsukida, A. Kisanuki, S. Minagoe, and C. Tei. Impact of atrial fibrillation on tricuspid and mitral annular dilatation and valvular regurgitation. Circ. J. 66:913–916, 2002.CrossRefPubMedGoogle Scholar

Copyright information

© Biomedical Engineering Society 2017

Authors and Affiliations

  • Manuel K. Rausch
    • 1
    • 2
    • 3
  • Marcin Malinowski
    • 4
    • 5
  • Penny Wilton
    • 4
  • Asghar Khaghani
    • 4
  • Tomasz A. Timek
    • 4
  1. 1.Department of Aerospace Engineering and Engineering MechanicsUniversity of Texas at AustinAustinUSA
  2. 2.Department of Biomedical EngineeringUniversity of Texas at AustinAustinUSA
  3. 3.Institute for Computational Engineering and SciencesUniversity of Texas at AustinAustinUSA
  4. 4.Meijer Heart and Vascular Institute at Spectrum HealthMichiganUSA
  5. 5.Department of Cardiac SurgeryMedical University of SilesiaKatowicePoland

Personalised recommendations