Annals of Biomedical Engineering

, Volume 46, Issue 3, pp 429–442 | Cite as

Mechanical Characterization and Material Modeling of Diabetic Aortas in a Rabbit Model

  • Jianhua Tong
  • F. Yang
  • X. Li
  • X. Xu
  • G. X. Wang


Diabetes has been recognized as a major risk factor to cause macrovascular diseases and plays a key role in aortic wall remodeling. However, the effects of diabetes on elastic properties of aortas remain largely unknown and quantitative mechanical data are lacking. Thirty adult rabbits (1.6–2.2 kg) were collected and the type 1 diabetic rabbit model was induced by injection of alloxan. A total of 15 control and 15 diabetic rabbit (abdominal) aortas were harvested. Uniaxial and biaxial tensile tests were performed to measure ultimate tensile strength and to characterize biaxial mechanical behaviors of the aortas. A material model was fitted to the biaxial experimental data to obtain constitutive parameters. Histological and mass fraction analyses were performed to investigate the underlying microstructure and dry weight percentages of elastin and collagen in the control and the diabetic aortas. No statistically significant difference was found in ultimate tensile strength between the control and the diabetic aortas. Regarding biaxial mechanical responses, the diabetic aortas exhibited significantly lower extensibility and significantly higher tissue stiffness than the control aortas. Notably, tissue stiffening occurred in both circumferential and axial directions for the diabetic aortas; however, mechanical anisotropy does not change significantly. The material model was able to fit biaxial experimental data very well. Histology showed that a number of isolated foam cells were embedded in the diabetic aortas and hyperplasia of collagen was identified. The dry weight percentages of collagen within the diabetic aortas increased significantly as compared to the control aortas, whereas no significant change was found for that of elastin. Our data suggest that the diabetes impairs elastic properties and alters microstructure of the aortas and consequently, these changes may further contribute to complex aortic wall remodeling.


Diabetic aorta Biomechanical behavior Uniaxial and biaxial tensile testing Material modeling Mass fraction analysis 



This work was financially supported by the National Natural Science Foundation of China (Grant No. 11702197), “Shanghai Pujiang Program” (16PJ1409200), the Fundamental Research Funds for the Central Universities (1500219128) and sponsored by Visiting Scholar Foundation of Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, People’s Republic of China (CQKLBST-2016-010). The authors particularly thank J. Huang from Shanghai East Hospital for his help during anatomical dissection of rabbit aortas.

Conflict of interest



  1. 1.
    Akhtar, R., J. K. Cruichshank, X. Zhao, L. A. Walton, N. J. Gardiner, S. D. Barrett, H. K. Graham, B. Derby, and M. J. Sherratt. A localized micro- and nano-scale remodeling in the diabetic aorta. Acta Biomater. 10:4843–4851, 2014.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Astrand, H., A. Rydén-Ahlgren, G. Sundkvist, T. Sandgren, and T. Länne. Reduced aortic wall stress in diabetes mellitus. Eur. J. Vasc. Endovasc. Surg. 33:592–598, 2007.CrossRefPubMedGoogle Scholar
  3. 3.
    Beckman, J. A., M. A. Creager, and P. Libby. Diabetes and atherosclerosis: epidemiology, pathophysiology, and management. J. Am. Med. Assoc. 287:2570–2581, 2002.CrossRefGoogle Scholar
  4. 4.
    Bjornheden, T., M. Levin, M. Evaldsson, and O. Wiklund. Evidence of hypoxia areas within the arterial wall in vivo. Arterioscler. Thromb. Vasc. Biol. 19:870–876, 1999.CrossRefPubMedGoogle Scholar
  5. 5.
    Brownlee, M., A. Cerami, and H. Vlassara. Advanced glycosylation end products in tissue and the biochemical basis of diabetic complications. N. Engl. J. Med. 318:1315–1321, 1988.CrossRefPubMedGoogle Scholar
  6. 6.
    Carmo, M., L. Colombo, A. Bruno, F. R. Corsi, L. Roncoroni, M. S. Cuttin, F. Radice, E. Mussini, and P. G. Settembrini. Alteration of elastin, collagen and their crosslinks in abdominal aortic aneurysms. Eur. J. Vasc. Endovasc. Surg. 23:543–549, 2002.CrossRefPubMedGoogle Scholar
  7. 7.
    Dua, M. M., N. Miyama, J. Azuma, G. M. Schultz, M. Sho, J. Morser, and R. L. Dalman. Hyperglycemia modulates plasminogen activator inhibitor-1 expression and aortic diameter in experimental aortic aneurysm disease. Surgery 148:429–435, 2010.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Gasser, T. C., R. W. Ogden, and G. A. Holzapfel. Hyperelastic modelling of arterial layers with distributed collagen fiber orientations. J. R. Soc. Interface 3:15–35, 2006.CrossRefPubMedGoogle Scholar
  9. 9.
    Golledge, J., M. Karan, C. S. Moran, J. Muller, P. Clancy, A. E. Dear, and P. E. Norman. Reduced expansion rate of abdominal aortic aneurysms in patients with diabetes may be related to aberrant monocyte–matrix interactions. Eur. Heart J. 29:665–672, 2008.CrossRefPubMedGoogle Scholar
  10. 10.
    Green, J., A. Yurdagul, Jr., M. C. McInnis, P. Albert, and A. W. Orr. Flow patterns regulate hyperglycemia-induced subendothelial matrix remodeling during early atherogenesis. Atherosclerosis 232:277–284, 2014.CrossRefPubMedGoogle Scholar
  11. 11.
    Grundy, S. M., I. J. Benjamin, G. L. Burke, A. Chait, R. H. Eckel, B. V. Howard, W. Mitch, S. C. Smith, Jr., and J. R. Sowers. Diabetes and cardiovascular disease: a statement for healthcare professionals from the American Heart Association. Circulation 100:1134–1146, 1999.CrossRefPubMedGoogle Scholar
  12. 12.
    Hammes, H. P., and M. Brownlee. Advanced glycation end products and pathogenesis of diabetic complications. In: Diabetes Mellitus: A Fundamental and Clinical Text, edited by D. LeRoith, S. I. Taylor, and J. M. Olefsky. Philadelphia: Lippincott-Raven Publishers, 1996, pp. 810–815.Google Scholar
  13. 13.
    Holzapfel, G. A. Nonlinear Solid Mechanics. A Continuum Approach for Engineering. Chichester: Wiley, 2000.Google Scholar
  14. 14.
    Holzapfel, G. A., T. C. Gasser, and R. W. Ogden. A new constitutive framework for arterial wall mechanics and a comparative study of material models. J. Elast. 61:1–48, 2000.CrossRefGoogle Scholar
  15. 15.
    Holzapfel, G. A., G. Sommer, T. C. Gasser, and P. Regitnig. Determination of layer-specific mechanical properties of human coronary arteries with nonatherosclerotic intimal thickening and related constitutive modeling. Am. J. Physiol. Heart Circ. Physiol. 289:H2048–H2058, 2005.CrossRefPubMedGoogle Scholar
  16. 16.
    Jhun, C. S., M. C. Evans, V. H. Barocas, and R. T. Tranquillo. Planar biaxial mechanical behavior of bioartificial tissues possessing prescribed fiber alignment. J. Biomech. Eng. 131:081006, 2009.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Karamoysoyli, E., R. C. Burnand, D. R. Tomlinson, and N. J. Gardiner. Neuritin mediates nerve growth factor-induced axonal regeneration and is deficient in experimental diabetic neuropathy. Diabetes 57:181–189, 2008.CrossRefPubMedGoogle Scholar
  18. 18.
    Katsuda, S., H. Miyashita, M. Hasegawa, N. Machida, M. Kusanagi, M. Yamasaki, H. Waki, and A. Hazama. Characteristic change in local pulse wave velocity in different segments of the atherosclerotic aorta in KHC rabbits. Am. J. Hypertens. 17:181–187, 2004.CrossRefPubMedGoogle Scholar
  19. 19.
    Kozakova, M., C. Morizzo, C. Bianchi, M. Di Filippi, R. Miccoli, M. Paterni, V. Di Bello, and C. Palombo. Glucose-related arterial stiffness and carotid artery remodeling: a study in normal subjects and type 2 diabetes patients. J. Clin. Endocrinol. Metab. 99:2362–2366, 2014.CrossRefGoogle Scholar
  20. 20.
    Mingueneau, M., A. Chaix, N. Scotti, J. Chaix, A. Reynders, C. Hammond, and J. Thimonier. Hands-on experiments on glycemia regulation and type 1 diabetes. Adv. Physiol. Educ. 39:232–239, 2015.CrossRefPubMedGoogle Scholar
  21. 21.
    Murtada, S., and G. A. Holzapfel. Investigating the role of smooth muscle cells in large elastic arteries: a finite element analysis. J. Theor. Biol. 358:1–10, 2014.CrossRefPubMedGoogle Scholar
  22. 22.
    Nadler, J. L., and L. Winer. Free radicals, nitric oxide, and diabetic complications. In: Diabetes Mellitus: A Fundamental and Clinical Text, edited by D. LeRoith, S. I. Taylor, and J. M. Olefsky. Philadelphia: Lippincott-Raven Publishers, 1996, pp. 840–847.Google Scholar
  23. 23.
    Novoselova, E. G., O. V. Glushkova, S. M. Lunin, M. O. Khrenov, T. V. Novoselova, S. B. Parfenyuk, and E. E. Fesenko. Signaling, stress response and apoptosis in pre-diabetes and diabetes: restoring immune balance in mice with alloxan-induced type 1 diabetes mellitus. Int. Immunopharmacol. 31:24–31, 2016.CrossRefPubMedGoogle Scholar
  24. 24.
    O’Leary, S. A., B. J. Doyle, and T. M. McGloughlin. Comparison of methods used to measure the thickness of soft tissues and their influence on the evaluation of tensile stress. J. Biomech. 46:1955–1960, 2013.CrossRefPubMedGoogle Scholar
  25. 25.
    O’Leary, S. A., D. A. Healey, E. G. Kavanagh, M. T. Walsh, T. M. McGloughlin, and B. J. Doyle. The biaxial biomechanical behavior of abdominal aortic aneurysm tissue. Ann. Biomed. Eng. 42:2440–2450, 2014.CrossRefPubMedGoogle Scholar
  26. 26.
    Polzer, S., T. C. Gasser, K. Novak, V. Man, M. Tichy, P. Skacel, and J. Bursa. Structure-based constitutive model can accurately predict planar biaxial properties of aortic wall tissue. Acta Biomater. 14:133–145, 2015.CrossRefPubMedGoogle Scholar
  27. 27.
    Qi, N., H. Gao, R. W. Ogden, N. A. Hill, G. A. Holzapfel, H. C. Han, and X. Luo. Investigation of the optimal collagen fiber orientation in human iliac arteries. J. Mech. Behav. Biomed. Mater. 52:108–119, 2015.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Reddy, J. K. Age-related cross-linking of collagen is associated with aortic wall matrix stiffness in the pathogenesis of drug-induced diabetes in rats. Microvasc. Res. 68:132–142, 2004.CrossRefPubMedGoogle Scholar
  29. 29.
    Sacks, M. S., and W. Sun. Multiaxial mechanical behavior of biological materials. Annu. Rev. Biomed. Eng. 5:251–284, 2003.CrossRefPubMedGoogle Scholar
  30. 30.
    Salum, E., P. Kampus, M. Zilmer, J. Eha, M. Butlin, A. P. Avolio, T. Põdramägi, A. Arend, M. Aunapuu, and J. Kals. Effect of vitamin D on aortic remodeling in streptozotocin-induced diabetes. Cardiovasc. Diabetol. 11:58, 2012.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Schram, M. T., R. M. Henry, R. A. van Dijk, P. J. Kostense, J. M. Dekker, G. Nijpels, R. J. Heine, L. M. Bouter, N. Westerhof, and C. D. Stehouwer. Increased central artery stiffness in impaired glucose metabolism and type 2 diabetes: the Hoorn Study. Hypertension 43:176–181, 2004.CrossRefPubMedGoogle Scholar
  32. 32.
    Schriefl, A. J., G. Zeindlinger, D. M. Pierce, P. Regitnig, and G. A. Holzapfel. Determination of the layer-specific distributed collagen fiber orientations in human thoracic and abdominal aortas and common iliac arteries. J. R. Soc. Interface 9:1275–1286, 2012.CrossRefPubMedGoogle Scholar
  33. 33.
    Sommer, G., A. Schriefl, G. Zeindlinger, A. Katzensteiner, H. Ainodhofer, A. Saxena, and G. A. Holzapfel. Multiaxial mechanical response and constitutive modeling of esophageal tissues: impact on esophageal tissue engineering. Acta Biomater. 9:9379–9391, 2013.CrossRefPubMedGoogle Scholar
  34. 34.
    Sun, H., M. Zhong, Y. Miao, X. Ma, H. P. Gong, H. W. Tan, Y. Zhang, and W. Zhang. Impaired elastic properties of the aorta in fat-fed, streptozotocin-treated rats. Vascular remodeling in diabetic arteries. Cardiology 114:107–113, 2009.CrossRefPubMedGoogle Scholar
  35. 35.
    Tong, J., T. Cohnert, P. Regitnig, and G. A. Holzapfel. Effects of age on the elastic properties of the intraluminal thrombus and the thrombus-covered wall in abdominal aortic aneurysms: biaxial extension behavior and material modeling. Eur. J. Vasc. Endovasc. Surg. 42:207–219, 2011.CrossRefPubMedGoogle Scholar
  36. 36.
    Tong, J., G. Sommer, P. Regitnig, and G. A. Holzapfel. Dissection properties and mechanical strength of tissue components in human carotid bifurcations. Ann. Biomed. Eng. 39:1703–1719, 2011.CrossRefPubMedGoogle Scholar
  37. 37.
    Tong, J., A. J. Schriefl, T. Cohnert, and G. A. Holzapfel. Gender differences in biomechanical properties, thrombus age, mass fraction and clinical factors of abdominal aortic aneurysms. Eur. J. Vasc. Endovasc. Surg. 45:364–372, 2013.CrossRefPubMedGoogle Scholar
  38. 38.
    Wang, Y., S. Zeinali-Davarani, E. C. Davis, and Y. Zhang. Effect of glucose on the biomechanical function of arterial elastin. J. Mech. Behav. Biomed. Mater. 49:244–254, 2015.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Zeinali-Davarani, S., Y. Wang, M. J. Chow, R. Turcotte, and Y. Zhang. Contribution of collagen fiber undulation to regional biomechanical properties along porcine thoracic aorta. J. Biomech. Eng. 137:051001, 2015.CrossRefPubMedGoogle Scholar
  40. 40.
    Zhao, J., X. Lu, F. Zhuang, and H. Gregersen. Biomechanical and morphometric properties of the arterial wall referenced to the zero-stress state in experimental diabetes. Biorheology 37:385–400, 2000.PubMedGoogle Scholar

Copyright information

© Biomedical Engineering Society 2017

Authors and Affiliations

  • Jianhua Tong
    • 1
  • F. Yang
    • 2
  • X. Li
    • 1
  • X. Xu
    • 3
  • G. X. Wang
    • 4
    • 5
  1. 1.Shanghai East Hospital, Institute for Biomedical Engineering and Nano ScienceTongji University School of MedicineShanghaiPeople’s Republic of China
  2. 2.School of Aerospace Engineering and Applied MechanicsTongji UniversityShanghaiPeople’s Republic of China
  3. 3.Department of Pathology and PathophysiologyTongji University School of MedicineShanghaiPeople’s Republic of China
  4. 4.Key Laboratory of Biorheological Science and Technology, Ministry of EducationBioengineering College of Chongqing UniversityChongqingPeople’s Republic of China
  5. 5.State and Local Joint Engineering Laboratory for Vascular ImplantsBioengineering College of Chongqing UniversityChongqingPeople’s Republic of China

Personalised recommendations