Skip to main content
Log in

The Effects of Visual Feedback Distortion with Unilateral Leg Loading on Gait Symmetry

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Our prior work provides evidence that visual feedback distortion drives an implicit adaptation; a gradual distortion of visual representation of step length modulated subjects’ step lengths away from symmetry. To further explore the effect of the visual feedback distortion on unconscious change in step symmetry, we investigated whether such adaptation would occur even in the presence of altered limb mechanics by adding mass to one side of the leg. 26 subjects performed three 8–min trials (weight only, weight plus visual feedback, and weight plus visual feedback distortion) of treadmill walking. During the weight only trial, the subjects wore a 5 lb mass around the right ankle. The modification of limb inertia caused asymmetric gait. The visual feedback showing right and left step length information as bar graphs was displayed on a computer screen. To add visual feedback distortion, we increased the length of one side of the visual bars by 10% above the actual step length, and the visual distortion was implemented for the side that took longer in response to the added mass. We found that even when adjustments were made to unilateral loading, the subjects spontaneously changed their step symmetry in response to the visual distortion, which resulted in a more symmetric gait. This change may be characterized by sensory prediction errors, and our results suggest that visual feedback distortion has a significant impact on gait symmetry regardless of other conditions affecting limb mechanics. A rehabilitation program employing visual feedback distortion may provide an effective way to restore gait symmetry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Balasubramanian, C. K., M. G. Bowden, R. R. Neptune, and S. A. Kautz. Relationship between step length asymmetry and walking performance in subjects with chronic hemiparesis. Arch. Phys. Med. Rehabil. 88:43–49, 2007.

    Article  PubMed  Google Scholar 

  2. Butt, S. J. B., J. M. Lebret, and O. Kiehn. Organization of left-right coordination in the mammalian locomotor network. Brain Res. Brain Res. Rev. 40:107–117, 2002.

    Article  PubMed  Google Scholar 

  3. Cho, K. H., and W. H. Lee. Virtual walking training program using a real-world video recording for patients with chronic stroke: A pilot study. Am. J. Phys. Med. Rehabil. 92:371–384, 2013.

    Article  PubMed  Google Scholar 

  4. Hb, S., and B. Rl. Ankle weighting effect on gait in able-bodied adults. Arch. Phys. Med. Rehabil. 71:112–115, 1990.

    Google Scholar 

  5. Higginson, J. S., F. E. Zajac, R. R. Neptune, S. A. Kautz, and S. L. Delp. Muscle contributions to support during gait in an individual with post-stroke hemiparesis. J. Biomech. 39:1769–1777, 2006.

    Article  CAS  PubMed  Google Scholar 

  6. Hodt-Billington, C., J. L. Helbostad, and R. Moe-Nilssen. Should trunk movement or footfall parameters quantify gait asymmetry in chronic stroke patients? Gait Posture 27:552–558, 2008.

    Article  PubMed  Google Scholar 

  7. Hornby, T. G., D. D. Campbell, J. H. Kahn, T. Demott, J. L. Moore, and H. R. Roth. Enhanced gait-related improvements after therapist- versus robotic-assisted locomotor training in subjects with chronic stroke. Stroke 39:1786–1792, 2008.

    Article  PubMed  Google Scholar 

  8. Ivanenko, Y. P., R. E. Poppele, and F. Lacquaniti. Distributed neural networks for controlling human locomotion: Lessons from normal and SCI subjects. Brain Res. Bull. 78:13–21, 2009.

    Article  CAS  PubMed  Google Scholar 

  9. Kamruzzaman, J., and R. K. Begg. Support vector machines and other pattern recognition approaches to the diagnosis of cerebral palsy gait. IEEE Trans. Biomed. Eng. 53:2479–2490, 2006.

    Article  PubMed  Google Scholar 

  10. Kawato, M. Internal models for motor control and trajectory planning. Curr. Opin. Neurobiol. 9:718–727, 1999.

    Article  CAS  PubMed  Google Scholar 

  11. Kim, S.-J., M. A. Kayitesi, A. Chan, and K. Graham. Effects of partial absence of visual feedback information on gait symmetry. Appl. Psychophysiol. Biofeedback 42:1–9, 2017. doi:10.1007/s10484-017-9358-0.

    Article  Google Scholar 

  12. Kim, S.-J., and H. I. Krebs. Effects of implicit visual feedback distortion on human gait. Exp. Brain Res. 218:495–502, 2012.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Kim, S.-J., and D. Mugisha. Effect of explicit visual feedback distortion on human gait. J. Neuroeng. Rehabil. 11:74, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Kim, S. J., M. Ogilvie, N. Shimabukuro, T. Stewart, and J. H. Shin. Effects of visual feedback distortion on gait adaptation: Comparison of implicit visual distortion versus conscious modulation on retention of motor learning. IEEE Trans. Biomed. Eng. 62:2244–2250, 2015.

    Article  PubMed  Google Scholar 

  15. Kim, S. J., M. Ogilvie, N. Shimabukuro, T. Stewart, and J. H. Shin. Effects of visual feedback distortion on gait adaptation: Comparison of implicit visual distortion versus conscious modulation on retention of motor learning. IEEE Trans. Biomed. Eng. 62:2244–2250, 2015.

    Article  PubMed  Google Scholar 

  16. Kodesh, E., M. Kafri, G. Dar, and R. Dickstein. Walking speed, unilateral leg loading, and step symmetry in young adults. Gait Posture 35:66–69, 2012.

    Article  PubMed  Google Scholar 

  17. Kornheiser, A. S. Adaptation to laterally displaced vision: A review. Psychol. Bull. 83:783–816, 1976.

    Article  CAS  PubMed  Google Scholar 

  18. Krakauer, J. W. Motor learning and consolidation: The case of visuomotor rotation. Adv. Exp. Med. Biol. 629:405–421, 2009.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Krebs, H. I., B. T. Volpe, M. L. Aisen, and N. Hogan. Increasing productivity and quality of care: Robot-aided neuro-rehabilitation. J. Rehabil. Res. Dev. 37:639, 2000.

    CAS  PubMed  Google Scholar 

  20. Kubo, K., T. Miyoshi, A. Kanai, and K. Terashima. Gait rehabilitation device in central nervous system disease: A review. J. Robot. 2011:e348207, 2011.

    Google Scholar 

  21. Laufer, Y., R. Dickstein, Y. Chefez, and E. Marcovitz. The effect of treadmill training on the ambulation of stroke survivors in the early stages of rehabilitation: A randomized study. J. Rehabil. Res. Dev. 38:69–78, 2001.

    CAS  PubMed  Google Scholar 

  22. Levin, I., M. D. Lewek, J. Feasel, and D. E. Thorpe. Gait training with visual feedback and proprioceptive input to reduce gait asymmetry in adults with cerebral palsy: A case series. Pediatr. Phys. Ther. 29:138–145, 2017.

    Article  PubMed  Google Scholar 

  23. Lewek, M. D., J. Feasel, E. Wentz, F. P. Brooks, and M. C. Whitton. Use of visual and proprioceptive feedback to improve gait speed and spatiotemporal symmetry following chronic stroke: A case series. Phys. Ther. 92:748–756, 2012.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Malone, L. A., and A. J. Bastian. Thinking about walking: effects of conscious correction versus distraction on locomotor adaptation. J. Neurophysiol. 103:1954–1962, 2010.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Mazzoni, P., and J. W. Krakauer. An implicit plan overrides an explicit strategy during visuomotor adaptation. J. Neurosci. Off. J. Soc. Neurosci. 26:3642–3645, 2006.

    Article  CAS  Google Scholar 

  26. Noble, J. W., and S. D. Prentice. Adaptation to unilateral change in lower limb mechanical properties during human walking. Exp. Brain Res. 169:482–495, 2006.

    Article  PubMed  Google Scholar 

  27. Patterson, K. K., N. K. Nadkarni, S. E. Black, and W. E. McIlroy. Gait symmetry and velocity differ in their relationship to age. Gait Posture 35:590–594, 2012.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Patterson, K. K., I. Parafianowicz, C. J. Danells, V. Closson, M. C. Verrier, W. R. Staines, S. E. Black, and W. E. McIlroy. Gait asymmetry in community-ambulating stroke survivors. Arch. Phys. Med. Rehabil. 89:304–310, 2008.

    Article  PubMed  Google Scholar 

  29. Plummer, P., A. L. Behrman, P. W. Duncan, P. Spigel, D. Saracino, J. Martin, E. Fox, M. Thigpen, and S. A. Kautz. Effects of stroke severity and training duration on locomotor recovery after stroke: A pilot study. Neurorehabilit. Neural Repair 21:137–151, 2007.

    Article  Google Scholar 

  30. Protas, E. J., S. A. Holmes, H. Qureshy, A. Johnson, D. Lee, and A. M. Sherwood. Supported treadmill ambulation training after spinal cord injury: A pilot study. Arch. Phys. Med. Rehabil. 82:825–831, 2001.

    Article  CAS  PubMed  Google Scholar 

  31. Redding, G. M., and B. Wallace. Adaptive spatial alignment and strategic perceptual-motor control. J. Exp. Psychol. Hum. Percept. Perform. 22:379–394, 1996.

    Article  CAS  PubMed  Google Scholar 

  32. Redding, G. M., and B. Wallace. Generalization of prism adaptation. J. Exp. Psychol. Hum. Percept. Perform. 32:1006–1022, 2006.

    Article  PubMed  Google Scholar 

  33. Rosati, G., A. Rodà, F. Avanzini, and S. Masiero. On the role of auditory feedback in robot-assisted movement training after stroke: Review of the literature. Intell. Neurosci. 2013(11):11, 2013.

    Google Scholar 

  34. Sadeghi, H., P. Allard, F. Prince, and H. Labelle. Symmetry and limb dominance in able-bodied gait: A review. Gait Posture 12:34–45, 2000.

    Article  CAS  PubMed  Google Scholar 

  35. Schaefer, S. Y., I. L. Shelly, and K. A. Thoroughman. Beside the point: Motor adaptation without feedback-based error correction in task-irrelevant conditions. J. Neurophysiol. 107:1247–1256, 2012.

    Article  PubMed  Google Scholar 

  36. Smith, J. D., and P. E. Martin. Walking patterns change rapidly following asymmetrical lower extremity loading. Hum. Mov. Sci. 26:412–425, 2007.

    Article  PubMed  Google Scholar 

  37. Stolze, H., S. Klebe, C. Baecker, C. Zechlin, L. Friege, S. Pohle, and G. Deuschl. Prevalence of gait disorders in hospitalized neurological patients. Mov. Disord. 20:89–94, 2005.

    Article  PubMed  Google Scholar 

  38. Thibaut, A., C. Chatelle, E. Ziegler, M.-A. Bruno, S. Laureys, and O. Gosseries. Spasticity after stroke: Physiology, assessment and treatment. Brain Inj. 27:1093–1105, 2013.

    Article  PubMed  Google Scholar 

  39. Thikey, H., M. Grealy, F. van Wijck, M. Barber, and P. Rowe. Augmented visual feedback of movement performance to enhance walking recovery after stroke: Study protocol for a pilot randomised controlled trial. Trials 13:163, 2012.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Tseng, Y.-W., J. Diedrichsen, J. W. Krakauer, R. Shadmehr, and A. J. Bastian. Sensory prediction errors drive cerebellum-dependent adaptation of reaching. J. Neurophysiol. 98:54–62, 2007.

    Article  PubMed  Google Scholar 

  41. van den Heuvel, M. R. C., E. E. H. van Wegen, C. J. T. de Goede, I. A. L. Burgers-Bots, P. J. Beek, A. Daffertshofer, and G. Kwakkel. The effects of augmented visual feedback during balance training in Parkinson’s disease: Study design of a randomized clinical trial. BMC Neurol. 13:137, 2013.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Whittle, M. W. Gait Analysis: An Introduction. Oxford: Butterworth-Heinemann, p. 241, 2014.

    Google Scholar 

  43. Winter, D. A., A. E. Patla, J. S. Frank, and S. E. Walt. Biomechanical walking pattern changes in the fit and healthy elderly. Phys. Ther. 70:340–347, 1990.

    Article  CAS  PubMed  Google Scholar 

  44. Young, D. E., and R. A. Schmidt. Augmented kinematic feedback for motor learning. J. Mot. Behav. 24:261–273, 1992.

    Article  PubMed  Google Scholar 

  45. Zhao, H., Y. Ren, E. J. Roth, R. L. Harvey, and L.-Q. Zhang. Concurrent deficits of soleus and gastrocnemius muscle fascicles and Achilles tendon post stroke. J. Appl. Physiol. 118:863–871, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the Gordon and Jill Bourns College of Engineering at California Baptist University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seung-Jae Kim.

Additional information

Associate Editor Thurmon E. Lockhart oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tobar, C., Martinez, E., Rhouni, N. et al. The Effects of Visual Feedback Distortion with Unilateral Leg Loading on Gait Symmetry. Ann Biomed Eng 46, 324–333 (2018). https://doi.org/10.1007/s10439-017-1954-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-017-1954-x

Keywords

Navigation