# The Advantages of Viscous Dissipation Rate over Simplified Power Loss as a Fontan Hemodynamic Metric

- 329 Downloads
- 5 Citations

## Abstract

Flow efficiency through the Fontan connection is an important factor related to patient outcomes. It can be quantified using either a simplified power loss or a viscous dissipation rate metric. Though practically equivalent in simplified Fontan circulation models, these metrics are not identical. Investigation is needed to evaluate the advantages and disadvantages of these metrics for their use in *in vivo* or more physiologically-accurate Fontan modeling. Thus, simplified power loss and viscous dissipation rate are compared theoretically, computationally, and statistically in this study. Theoretical analysis was employed to assess the assumptions made for each metric and its clinical calculability. Computational simulations were then performed to obtain these two metrics. The results showed that apparent simplified power loss was always greater than the viscous dissipation rate for each patient. This discrepancy can be attributed to the assumptions derived in theoretical analysis. Their effects were also deliberately quantified in this study. Furthermore, statistical analysis was conducted to assess the correlation between the two metrics. Viscous dissipation rate and its indexed quantity show significant, strong, linear correlation to simplified power loss and its indexed quantity (*p* < 0.001, *r* > 0.99) under certain assumptions. In conclusion, viscous dissipation rate was found to be more advantageous than simplified power loss as a hemodynamic metric because of its lack of limiting assumptions and calculability in the clinic. Moreover, in addition to providing a time-averaged bulk measurement like simplified power loss, viscous dissipation rate has spatial distribution contours and time-resolved values that may provide additional clinical insight. Finally, viscous dissipation rate could maintain the relationship between Fontan connection flow efficiency and patient outcomes found in previous studies. Consequently, future Fontan hemodynamic studies should calculate both simplified power loss and viscous dissipation rate to maintain ties to previous studies, but also provide the most accurate measure of flow efficiency. Additional attention should be paid to the assumptions required for each metric.

## Keywords

Fontan hemodynamics Flow Efficiency Power loss Viscous dissipation## Notes

### Acknowledgments

This study was supported by the National Heart, Lung, and Blood Institute Grants HL67622 and HL098252. The authors acknowledge the use of ANSYS software which was provided through an Academic Partnership between ANSYS, Inc. and the Cardiovascular Fluid Mechanics Lab at the Georgia Institute of Technology. Additionally, the authors would like to acknowledge Luyu Zhang from Emory University for assistance in statistical analysis.

### Conflict of interest

The authors report no conflicts of interest.

## References

- 1.Bakhshinejad, A., A. Baghaie, A. Vali, D. Saloner, V. L. Rayz, and R. M. D’Souza. Merging computational fluid dynamics and 4D flow MRI using proper orthogonal decomposition and ridge regression.
*J. Biomech*2017. https://doi.org/10.1016/j.jbiomech.2017.05.004.PubMedGoogle Scholar - 2.Bland, J. M., and D. G. Altman. Measuring agreement in method comparison studies.
*Stat. Methods Med. Res*8:135–160, 1999.CrossRefPubMedGoogle Scholar - 3.Chandran, K. B., S. E. Rittgers, and A. P. Yoganathan. Biofluid Mechanics: The Human Circulation. CRC Press, Taylor & Francis Group, 2012, p. 431. https://www.crcpress.com/Biofluid-Mechanics-The-Human-Circulation-Second-Edition/Chandran-Rittgers-Yoganathan/p/book/9781439845165.
- 4.Cheng, A. L., C. M. Takao, R. B. Wenby, H. J. Meiselman, J. C. Wood, and J. A. Detterich. Elevated low-shear blood viscosity is associated with decreased pulmonary blood flow in children with univentricular heart defects.
*Pediatr. Cardiol.*37:789–801, 2016.CrossRefPubMedPubMedCentralGoogle Scholar - 5.Chopski, S. G., O. M. Rangus, W. B. Moskowitz, and A. L. Throckmorton. Experimental measurements of energy augmentation for mechanical circulatory assistance in a patient-specific fontan model.
*Artif. Organs*38:791–799, 2014.PubMedGoogle Scholar - 6.Cibis, M., K. Jarvis, M. Markl, M. Rose, C. Rigsby, A. J. Barker, and J. J. Wentzel. The effect of resolution on viscous dissipation measured with 4D flow MRI in patients with Fontan circulation: Evaluation using computational fluid dynamics.
*J. Biomech.*48:2984–2989, 2015.CrossRefPubMedPubMedCentralGoogle Scholar - 7.Dasi, L. P., K. Pekkan, H. D. Katajima, and A. P. Yoganathan. Functional analysis of Fontan energy dissipation.
*J. Biomech.*41:2246–2252, 2008.CrossRefPubMedGoogle Scholar - 8.Dubini, G., M. R. de Leval, R. Pietrabissa, F. M. Montevecchi, and R. Fumero. A numerical fluid mechanical study of repaired congenital heart defects. Application to the total cavopulmonary connection.
*J. Biomech.*29:111–121, 1996.CrossRefPubMedGoogle Scholar - 9.Ensley, A. E., P. Lynch, G. P. Chatzimavroudis, C. Lucas, S. Sharma, and A. P. Yoganathan. Toward designing the optimal total cavopulmonary connection: An in vitro study.
*Ann. Thorac. Surg.*68:1384–1390, 1999.CrossRefPubMedGoogle Scholar - 10.Fung, Y. C. Biomechanics: Circulation. New York: Springer, 1997.CrossRefGoogle Scholar
- 11.Grigioni, M., G. D. Avenio, C. Del Gaudio, and U. Morbiducci. Critical issues in studies of flow through the Fontan circuit after 10 years of investigation.
*Cardiol. Young*15:68–73, 2005.CrossRefPubMedGoogle Scholar - 12.Ha, H., G. B. Kim, J. Kweon, S. J. Lee, Y.-H. Kim, D. H. Lee, D. H. Yang, and N. Kim. Hemodynamic measurement using four-dimensional phase-contrast MRI: Quantification of hemodynamic parameters and clinical applications.
*Korean J. Radiol.*17:445, 2016.CrossRefPubMedPubMedCentralGoogle Scholar - 13.Haggerty, C. M., M. Restrepo, E. Tang, D. A. de Zélicourt, K. S. Sundareswaran, L. Mirabella, J. Bethel, K. K. Whitehead, M. A. Fogel, and A. P. Yoganathan. Fontan hemodynamics from 100 patient-specific cardiac magnetic resonance studies: A computational fluid dynamics analysis.
*J. Thorac. Cardiovasc. Surg.*148:1481–1489, 2014.CrossRefPubMedGoogle Scholar - 14.Haggerty, C. M., K. K. Whitehead, J. Bethel, M. A. Fogel, and A. P. Yoganathan. Relationship of single ventricle filling and preload to total cavopulmonary connection hemodynamics.
*Ann. Thorac. Surg.*99:911–917, 2015.CrossRefPubMedPubMedCentralGoogle Scholar - 15.Healy, T. M., C. Lucas, and A. P. Yoganathan. Noninvasive fluid dynamic power loss assessments for total cavopulmonary connections using the viscous dissipation function: A feasibility study.
*J. Biomech. Eng.*123:317, 2001.CrossRefPubMedGoogle Scholar - 16.Johnston, B. M., P. R. Johnston, S. Corney, and D. Kilpatrick. Non-Newtonian blood flow in human right coronary arteries: Steady state simulations.
*J. Biomech.*37:709–720, 2004.CrossRefPubMedGoogle Scholar - 17.Khiabani, R. H., K. K. Whitehead, D. Han, M. Restrepo, E. Tang, J. Bethel, S. M. Paridon, M. A. Fogel, and A. P. Yoganathan. Exercise capacity in single-ventricle patients after Fontan correlates with haemodynamic energy loss in TCPC.
*Heart*101:139–143, 2015.CrossRefPubMedGoogle Scholar - 18.Lardo, A. C., S. A. Webber, I. Friehs, P. J. Del Nido, and E. G. Cape. Fluid dynamic comparison of intra-atrial and extracardiac total cavopulmonary connections.
*J. Thorac. Cardiovasc. Surg.*117:697–704, 1999.CrossRefPubMedGoogle Scholar - 19.Long, C. C., M.-C. C. M. Hsu, Y. Bazilevs, J. A. Feinstein, and A. L. Marsden. Fluid—structure interaction simulations of the Fontan procedure using variable wall properties.
*Int. J. Numer. Method. Biomed. Eng.*28:513–527, 2012.CrossRefPubMedGoogle Scholar - 20.Low, H. T. T., Y. T. T. Chew, and C. N. N. Lee. Flow studies on atriopulmonary and cavopulmonary connections of the Fontan operations for congenital heart defects.
*J. Biomed. Eng.*15:303–307, 1993.CrossRefPubMedGoogle Scholar - 21.Moyle, K., G. Mallinson, and B. Cowan. Volumetric methods for evaluating irreversible energy losses and entropy production with application to bioengineering flows.
*Int. J. Numer. Methods Fluids*50:1357–1368, 2006.CrossRefGoogle Scholar - 22.Munson, B. R., D. F. Young, and T. H. Okiishi. Fundamentals of Fluid Mechanics. New York: Wiley, 2006.Google Scholar
- 23.Restrepo, M., M. Luffel, J. Sebring, K. R. Kanter, P. J. Del Nido, A. Veneziani, J. Rossignac, and A. P. Yoganathan. Surgical planning of the total cavopulmonary connection: robustness analysis.
*Ann. Biomed. Eng.*2014. https://doi.org/10.1007/s10439-014-1149-7.PubMedPubMedCentralGoogle Scholar - 24.Restrepo, M., E. Tang, C. M. Haggerty, R. H. Khiabani, L. Mirabella, J. Bethel, A. M. Valente, K. K. Whitehead, D. B. McElhinney, M. A. Fogel, and A. P. Yoganathan. Energetic implications of vessel growth and flow changes over time in fontan patients.
*Ann. Thorac. Surg.*99:163–170, 2015.CrossRefPubMedGoogle Scholar - 25.Santhanakrishnan, A., K. O. Maher, E. Tang, R. H. Khiabani, J. Johnson, and A. P. Yoganathan. Hemodynamic effects of implanting a unidirectional valve in the inferior vena cava of the Fontan circulation pathway: An in vitro investigation.
*Am. J. Physiol Heart. Circ. Physiol.*305:H1538–H1547, 2013.CrossRefPubMedGoogle Scholar - 26.Soerensen, D. D., K. Pekkan, K. S. Sundareswaran, and A. P. Yoganathan. New power loss optimized Fontan connection evaluated by calculation of power loss using high resolution PC-MRI and CFD.
*Conf. Proc. IEEE Eng. Med. Biol. Soc.*2:1144–1147, 2004.PubMedGoogle Scholar - 27.Tang, E., M. Restrepo, C. M. Haggerty, L. Mirabella, J. Bethel, K. K. Whitehead, M. A. Fogel, and A. P. Yoganathan. Geometric characterization of patient-specific total cavopulmonary connections and its relationship to hemodynamics.
*JACC Cardiovasc. Imaging*7:215–224, 2014.CrossRefPubMedPubMedCentralGoogle Scholar - 28.Tang, E., Z. Wei, K. K. Whitehead, R. H. Khiabani, M. Restrepo, L. Mirabella, J. Bethel, S. M. Paridon, B. S. Marino, M. A. Fogel, and A. P. Yoganathan. Effect of Fontan geometry on exercise haemodynamics and its potential implications.
*Heart*2017. https://doi.org/10.1136/heartjnl-2016-310855.Google Scholar - 29.Volonghi, P., D. Tresoldi, M. Cadioli, A. M. Usuelli, R. Ponzini, U. Morbiducci, A. Esposito, and G. Rizzo. Automatic extraction of three-dimensional thoracic aorta geometric model from phase contrast MRI for morphometric and hemodynamic characterization.
*Magn. Reson. Med.*882:873–882, 2016.CrossRefGoogle Scholar - 30.Vukicevic, M., T. A. Conover, M. Jaeggli, J. Zhou, G. Pennati, T.-Y. T. Hsia, and R. S. Figliola. Control of respiration-driven retrograde flow in the subdiaphragmatic venous return of the Fontan circulation.
*ASAIO J.*60:21–23, 2014.CrossRefGoogle Scholar - 31.Wang, C., K. Pekkan, D. de Zélicourt, M. Horner, A. Parihar, A. Kulkarni, and A. P. Yoganathan. Progress in the CFD modeling of flow instabilities in anatomical total cavopulmonary connections.
*Ann. Biomed. Eng.*35:1840–1856, 2007.CrossRefPubMedGoogle Scholar - 32.Wei, Z. A., P. M. Trusty, M. Tree, C. M. Haggerty, E. Tang, M. Fogel, and A. P. Yoganathan. Can time-averaged flow boundary conditions be used to meet the clinical timeline for Fontan surgical planning?
*J. Biomech.*50:172–179, 2017.CrossRefPubMedGoogle Scholar - 33.Wei, Z., K. K. Whitehead, R. H. Khiabani, M. Tree, E. Tang, S. M. Paridon, M. A. Fogel, and A. P. Yoganathan. Respiratory effects on Fontan circulation during rest and exercise using real-time cardiac magnetic resonance imaging.
*Ann. Thorac. Surg.*101:1818–1825, 2016.CrossRefPubMedPubMedCentralGoogle Scholar - 34.Whitehead, K. K., K. Pekkan, H. D. Kitajima, S. M. Paridon, A. P. Yoganathan, and M. A. Fogel. Nonlinear power loss during exercise in single-ventricle patients after the Fontan: Insights from computational fluid dynamics.
*Circulation*116:I-165–I-171, 2000.Google Scholar