Skip to main content
Log in

Beat-by-Beat Estimation of the Left Ventricular Pressure–Volume Loop Under Clinical Conditions

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

This paper develops a method for the minimally invasive, beat-by-beat estimation of the left ventricular pressure–volume loop. This method estimates the left ventricular pressure and volume waveforms that make up the pressure–volume loop using clinically available inputs supported by a short, baseline echocardiography reading. Validation was performed across 142,169 heartbeats of data from 11 Piétrain pigs subject to two distinct protocols encompassing sepsis, dobutamine administration and clinical interventions. The method effectively located pressure–volume loops, with low overall median errors in end-diastolic volume of 8.6%, end-systolic volume of 17.3%, systolic pressure of 19.4% and diastolic pressure of 6.5%. The method further demonstrated a low overall mean error of 23.2% predicting resulting stroke work, and high correlation coefficients along with a high percentage of trend compass ‘in band’ performance tracking changes in stroke work as patient condition varied. This set of results forms a body of evidence for the potential clinical utility of the method. While further validation in humans is required, the method has the potential to aid in clinical decision making across a range of clinical interventions and disease state disturbances by providing real-time, beat-to-beat, patient specific information at the intensive care unit bedside without requiring additional invasive instrumentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Baan, J., and E. T. Van Der Velde. Sensitivity of left ventricular end-systolic pressure-volume relation to type of loading intervention in dogs. Circ. Res. 62:1247–1258, 1988.

    Article  CAS  PubMed  Google Scholar 

  2. Berry, M. F., T. J. Pirolli, V. Jayasankar, J. Burdick, K. J. Morine, T. J. Gardner, and Y. J. Woo. Apelin has in vivo inotropic effects on normal and failing hearts. Circulation 110:II-187–II-193, 2004.

    Article  Google Scholar 

  3. Bland, J. M., and D. G. Altman. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1:307–310, 1986.

    Article  CAS  PubMed  Google Scholar 

  4. Broscheit, J.-A., F. Weidemann, J. Strotmann, P. Steendijk, H. Karle, N. Roewer, and C.-A. Greim. Time-varying elastance concept applied to the relation of carotid arterial flow velocity and ventricular area. J. Cardiothorac. Vasc. Anesth. 20:340–346, 2006.

    Article  CAS  PubMed  Google Scholar 

  5. Burkhoff, D., P. P. De Tombe, and W. C. Hunter. Impact of ejection on magnitude and time course of ventricular pressure-generating capacity. Am. J. Physiol.-Heart Circ. Physiol. 265:H899–H909, 1993.

    Article  CAS  Google Scholar 

  6. Burkhoff, D., and K. Sagawa. Ventricular efficiency predicted by an analytical model. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 250:R1021–R1027, 1986.

    Article  CAS  Google Scholar 

  7. Chatterjee, K. The swan-ganz catheters: past, present, and future a viewpoint. Circulation 119:147–152, 2009.

    Article  PubMed  Google Scholar 

  8. Chen, C.-H., B. Fetics, E. Nevo, C. E. Rochitte, K.-R. Chiou, P.-A. Ding, M. Kawaguchi, and D. A. Kass. Noninvasive single-beat determination of left ventricular end-systolic elastance in humans. J. Am. Coll. Cardiol. 38:2028–2034, 2001.

    Article  CAS  PubMed  Google Scholar 

  9. Cousins, T. R., and J. M. O’Donnell. Arterial cannulation: a critical review. AANA J. 72(4):267–271, 2004.

    PubMed  Google Scholar 

  10. Davidson S., C. Pretty, S. Kamoi, J. Balmer, T. Desaive and J. Chase. Real-time, minimally invasive, beat-to-beat estimation of end-systolic volume using a modified end-systolic pressure–volume relation. The 20th World Congress of the International Federation of Automatic Control, 9–14 July 2017.

  11. Davidson, S., C. Pretty, A. Pironet, T. Desaive, N. Janssen, B. Lambermont, P. Morimont, and J. G. Chase. Minimally invasive estimation of ventricular dead space volume through use of Frank-Starling curves. PloS ONE 12:e0176302, 2017.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Davidson, S., C. Pretty, A. Pironet, S. Kamoi, J. Balmer, T. Desaive, and J. G. Chase. Minimally invasive, patient specific, beat-by-beat estimation of left ventricular time varying elastance. Biomed. Eng. Online 16:42, 2017.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Dellinger, R. P., M. M. Levy, J. M. Carlet, J. Bion, M. M. Parker, R. Jaeschke, K. Reinhart, D. C. Angus, C. Brun-Buisson, and R. Beale. Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock: 2008. Intensive Care Med. 34:17–60, 2008.

    Article  PubMed  Google Scholar 

  14. Ferrandis, M.-J., I. Ryden, T. L. Lindahl, and A. Larsson. Ruling out cardiac failure: cost-benefit analysis of a sequential testing strategy with NT-proBNP before echocardiography. Upsala J. Med. Sci. 118:75–79, 2013.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Frazier, S. K., and G. J. Skinner. Pulmonary artery catheters: state of the controversy. J. Cardiovasc. Nurs. 23:113–121, 2008.

    Article  PubMed  Google Scholar 

  16. Gershengorn, H. B., A. Garland, A. Kramer, D. C. Scales, G. Rubenfeld, and H. Wunsch. Variation of arterial and central venous catheter use in United States intensive care units. J. Am. Soc. Anesthesiol. 120:650–664, 2014.

    Article  Google Scholar 

  17. Gershengorn, H. B., H. Wunsch, D. C. Scales, R. Zarychanski, G. Rubenfeld, and A. Garland. Association between arterial catheter use and hospital mortality in intensive care units. JAMA Intern. Med. 174:1746–1754, 2014.

    Article  PubMed  Google Scholar 

  18. Glower, D. D., J. A. Spratt, N. D. Snow, J. S. Kabas, J. W. Davis, C. Olsen, G. Tyson, D. Sabiston, and J. Rankin. Linearity of the Frank-Starling relationship in the intact heart: the concept of preload recruitable stroke work. Circulation 71:994–1009, 1985.

    Article  CAS  PubMed  Google Scholar 

  19. Hall, J. E. Guyton and Hall Textbook Of Medical Physiology. Philadelphia: Elsevier Health Sciences, 2010.

    Google Scholar 

  20. Jardin, F., J.-C. Farcot, L. Boisante, N. Curien, A. Margairaz, and J.-P. Bourdarias. Influence of positive end-expiratory pressure on left ventricular performance. N. Engl. J. Med. 304:387–392, 1981.

    Article  CAS  PubMed  Google Scholar 

  21. Kamoi, S., C. Pretty, J. Balmer, S. Davidson, A. Pironet, T. Desaive, G. M. Shaw, and J. G. Chase. Improved pressure contour analysis for estimating cardiac stroke volume using pulse wave velocity measurement. Biomed. Eng. Online 16:51, 2017.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Kamoi, S., C. Pretty, P. Docherty, D. Squire, J. Revie, Y. S. Chiew, T. Desaive, G. M. Shaw, and J. G. Chase. Continuous stroke volume estimation from aortic pressure using zero dimensional cardiovascular model: proof of concept study from porcine experiments. PloS ONE 9:e102476, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Karunanithi, M. K., and M. P. Feneley. Single-beat determination of preload recruitable stroke work relationship: derivation and evaluation in conscious dogs. J. Am. Coll. Cardiol. 35:502–513, 2000.

    Article  CAS  PubMed  Google Scholar 

  24. Kastrup, M., A. Markewitz, C. Spies, M. Carl, J. Erb, J. Grosse, and U. Schirmer. Current practice of hemodynamic monitoring and vasopressor and inotropic therapy in post-operative cardiac surgery patients in Germany: results from a postal survey. Acta Anaesthesiol. Scand. 51:347–358, 2007.

    Article  CAS  PubMed  Google Scholar 

  25. Klabunde, R. Cardiovascular Physiology Concepts. Philadelphia: Lippincott Williams & Wilkins, 2011.

    Google Scholar 

  26. Klotz, S., I. Hay, M. L. Dickstein, G.-H. Yi, J. Wang, M. S. Maurer, D. A. Kass, and D. Burkhoff. Single-beat estimation of end-diastolic pressure-volume relationship: a novel method with potential for noninvasive application. Am. J. Physiol.-Heart Circ. Physiol. 291:H403–H412, 2006.

    Article  CAS  PubMed  Google Scholar 

  27. Lee, W.-S., W.-P. Huang, W.-C. Yu, K.-R. Chiou, P. Y.-A. Ding, and C.-H. Chen. Estimation of preload recruitable stroke work relationship by a single-beat technique in humans. Am. J. Physiol.-Heart Circ. Physiol. 284:H744–H750, 2003.

    Article  CAS  PubMed  Google Scholar 

  28. Lee Rodgers, J., and W. A. Nicewander. Thirteen ways to look at the correlation coefficient. Am. Stat. 42:59–66, 1988.

    Article  Google Scholar 

  29. Lips, D. J., T. vd Nagel, P. Steendijk, M. Palmen, B. J. Janssen, J.-M. Dantzig, L. J. de Windt, P. A. Doevendans, and D. J. Lips. Left ventricular pressure–volume measurements in mice: comparison of closed–chest versus open–chest approach. Basic Res. Cardiol. 99:351–359, 2004.

    Article  PubMed  Google Scholar 

  30. Malm, S., S. Frigstad, E. Sagberg, H. Larsson, and T. Skjaerpe. Accurate and reproducible measurement of left ventricular volume and ejection fraction by contrast echocardiography. J. Am. Coll. Cardiol. 44:1030–1035, 2004.

    Article  PubMed  Google Scholar 

  31. Mozaffarian, D., E. J. Benjamin, A. S. Go, D. K. Arnett, M. J. Blaha, M. Cushman, S. R. Das, S. de Ferranti, J.-P. Després, and H. J. Fullerton. Heart disease and stroke statistics—2016 update. Circulation 133:e38–e360, 2016.

    Article  PubMed  Google Scholar 

  32. Nguyen, H. B., E. P. Rivers, F. M. Abrahamian, G. J. Moran, E. Abraham, S. Trzeciak, D. T. Huang, T. Osborn, D. Stevens, and D. A. Talan. Severe sepsis and septic shock: review of the literature and emergency department management guidelines. Ann. Emerg. Medicine 48:54, 2006.

    Google Scholar 

  33. Pironet, A., P. C. Dauby, J. G. Chase, S. Kamoi, N. Janssen, P. Morimont, B. Lambermont, and T. Desaive. Model-based stressed blood volume is an index of fluid responsiveness** This work was supported by the French Community of Belgium, the Belgian Funds for Scientific Research (FRS-FNRS) and EU Marie Curie actions (FP7-PEOPLE-2012-IRSES). IFAC-PapersOnLine 48:291–296, 2015.

    Article  Google Scholar 

  34. Sagawa, K. Editorial: the end-systolic pressure-volume relation of the ventricle: definition, modifications and clinical use. Circulation 63:1223–1227, 1981.

    Article  CAS  PubMed  Google Scholar 

  35. Schiller, N. B., H. Acquatella, T. A. Ports, D. Drew, J. Goerke, H. Ringertz, N. H. Silverman, B. Brundage, E. H. Botvinick, and R. Boswell. Left ventricular volume from paired biplane two-dimensional echocardiography. Circulation 60:547–555, 1979.

    Article  CAS  PubMed  Google Scholar 

  36. Senzaki, H., C.-H. Chen, and D. A. Kass. Single-beat estimation of end-systolic pressure-volume relation in humans a new method with the potential for noninvasive application. Circulation 94:2497–2506, 1996.

    Article  CAS  PubMed  Google Scholar 

  37. Signal, M., R. Gottlieb, A. Le Compte, and J. G. Chase. Continuous glucose monitoring and trend accuracy: NEWS about a trend compass. J. Diab. Sci. Technol. 8:986–997, 2014.

    Article  Google Scholar 

  38. Stevenson, D., J. Revie, J. G. Chase, C. E. Hann, G. M. Shaw, B. Lambermont, A. Ghuysen, P. Kolh, and T. Desaive. Algorithmic processing of pressure waveforms to facilitate estimation of cardiac elastance. Biomed. Eng. Online 11:1–16, 2012.

    Article  Google Scholar 

  39. Stevenson, D., J. Revie, J. G. Chase, C. E. Hann, G. M. Shaw, B. Lambermont, A. Ghuysen, P. Kolh, and T. Desaive. Beat-to-beat estimation of the continuous left and right cardiac elastance from metrics commonly available in clinical settings. Biomed. Eng. Online 11:73, 2012.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Suga, H. Ventricular energetics. Physiol. Rev. 70:247–277, 1990.

    Article  CAS  PubMed  Google Scholar 

  41. Suga, H., K. Sagawa, and A. A. Shoukas. Load independence of the instantaneous pressure-volume ratio of the canine left ventricle and effects of epinephrine and heart rate on the ratio. Circ. Res. 32:314–322, 1973.

    Article  CAS  PubMed  Google Scholar 

  42. van Hout, G. P., S. J. Jansen, J. M. Gho, P. A. Doevendans, W. W. van Solinge, G. Pasterkamp, S. A. Chamuleau, and I. E. Hoefer. Admittance-based pressure–volume loops versus gold standard cardiac magnetic resonance imaging in a porcine model of myocardial infarction. Physiol. Rep. 2:e00287, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Vieillard-Baron, A., M. Slama, B. Cholley, G. Janvier, and P. Vignon. Echocardiography in the intensive care unit: from evolution to revolution? Intensive Care Med. 34:243–249, 2008.

    Article  PubMed  Google Scholar 

  44. Vincent, J.-L., and H. Gerlach. Fluid resuscitation in severe sepsis and septic shock: an evidence-based review. Crit. Care Med. 32:S451–S454, 2004.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

No benefits in any form have been or will be received from a commercial party related directly or indirectly to the subject of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaun Davidson.

Additional information

Associate Editor Elena S. Di Martino oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Davidson, S., Pretty, C., Kamoi, S. et al. Beat-by-Beat Estimation of the Left Ventricular Pressure–Volume Loop Under Clinical Conditions. Ann Biomed Eng 46, 171–185 (2018). https://doi.org/10.1007/s10439-017-1947-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-017-1947-9

Keywords

Navigation