Skip to main content
Log in

A Novel Multi-objective Physiological Control System for Rotary Left Ventricular Assist Devices

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Various control and monitoring algorithms have been proposed to improve the left-ventricular assist device (LVAD) therapy by reducing the still-occurring adverse events. We developed a novel multi-objective physiological control system that relies on the pump inlet pressure (PIP). Signal-processing algorithms have been implemented to extract the required features from the PIP. These features then serve for meeting various objectives: pump flow adaptation to the perfusion requirements, aortic valve opening for a predefined time, augmentation of the aortic pulse pressure, and monitoring of the LV pre- and afterload conditions as well as the cardiac rhythm. Controllers were also implemented to ensure a safe operation and prevent LV suction, overload, and pump backflow. The performance of the control system was evaluated in vitro, under preload, afterload and contractility variations. The pump flow adapted in a physiological manner, following the preload changes, while the aortic pulse pressure yielded a threefold increase compared to a constant-speed operation. The status of the aortic valve was detected with an overall accuracy of 86% and was controlled as desired. The proposed system showed its potential for a safe physiological response to varying perfusion requirements that reduces the risk of myocardial atrophy and offers important hemodynamic indices for patient monitoring during LVAD therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Amacher, R., J. Asprion, G. Ochsner, H. Tevaearai, M. J. Wilhelm, A. Plass, A. Amstutz, S. Vandenberghe, and M. Schmid Daners. Numerical optimal control of turbo dynamic ventricular assist devices. Bioengineering 1:22–46, 2013.

    Article  Google Scholar 

  2. Amacher, R., G. Ochsner, A. Ferreira, S. Vandenberghe, and M. Schmid Daners. A robust reference signal generator for synchronized ventricular assist devices. IEEE Trans. Biomed. Eng. 60:2174–2183, 2013.

    Article  PubMed  Google Scholar 

  3. Amacher, R., G. Ochsner, and M. Schmid Daners. Synchronized pulsatile speed control of turbodynamic left ventricular assist devices: review and prospects. Artif. Organs 38:867–875, 2014.

    Article  PubMed  Google Scholar 

  4. Ando, M., Y. Takewa, T. Nishimura, K. Yamazaki, S. Kyo, M. Ono, T. Tsukiya, T. Mizuno, Y. Taenaka, and E. Tatsumi. A novel counterpulsation mode of rotary left ventricular assist devices can enhance myocardial perfusion. Int. J. Artif. Organs 14:185–191, 2011.

    Article  Google Scholar 

  5. Arndt, A., P. Nüsser, and B. Lampe. Fully autonomous preload-sensitive control of implantable rotary blood pumps. Artif. Organs 34:726–735, 2010.

    Article  PubMed  Google Scholar 

  6. Boës, S., G. Ochsner, R. Amacher, A. Petrou, M. Meboldt, and M. Schmid Daners. Control of the fluid viscosity in a mock circulation. Artif. Organs, 2017. doi:10.1111/aor.12948.

    PubMed  Google Scholar 

  7. Bullister, E., S. Reich, and J. Sluetz. Physiologic control algorithms for rotary blood pumps using pressure sensor input. Artif. Organs 26:931–938, 2002.

    Article  PubMed  Google Scholar 

  8. Camboni, D., T. J. Lange, P. Ganslmeier, S. Hirt, B. Flörchinger, Y. Zausig, L. Rupprecht, M. Hilker, and C. Schmid. Left ventricular support adjustment to aortic valve opening with analysis of exercise capacity. J. Cardiothorac. Surg. 9:93, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Colacino, F. M., F. Moscato, F. Piedimonte, M. Arabia, and G. A. Danieli. Left ventricle load impedance control by apical vad can help heart recovery and patient perfusion: a numerical study. ASAIO J. 53:263–277, 2007.

    Article  PubMed  Google Scholar 

  10. Crestanello, J. A., D. A. Orsinelli, M. S. Firstenberg, and C. Sai-Sudhakar. Aortic valve thrombosis after implantation of temporary left ventricular assist device. Interact. Cardiovasc. Thorac. Surg. 8:661–662, 2009.

    Article  PubMed  Google Scholar 

  11. Granegger, M., M. Masetti, R. Laohasurayodhin, T. Schloeglhofer, D. Zimpfer, H. Schima, and F. Moscato. Continuous monitoring of aortic valve opening in rotary blood pump patients. IEEE Trans. Biomed. Eng. 63:1201–1207, 2016.

    Article  PubMed  Google Scholar 

  12. Guyton, A. C. Textbook of medical physiology. Acad. Med. 36:556, 1961.

    Google Scholar 

  13. Jansen-Park, S.-H., S. Spiliopoulos, H. Deng, N. Greatrex, U. Steinseifer, D. Guersoy, R. Koerfer, and G. Tenderich. A monitoring and physiological control system for determining aortic valve closing with a ventricular assist device. Eur. J. Cardiothorac. Surg. 46:356–360, 2014.

    Article  PubMed  Google Scholar 

  14. Karantonis, D. M., E. Lim, D. G. Mason, R. F. Salamonsen, P. J. Ayre, and N. H. Lovell. Noninvasive activity-based control of an implantable rotary blood pump: comparative software simulation study. Artif. Organs 34:E34–E45, 2010.

    Article  PubMed  Google Scholar 

  15. Kirklin, J. K., D. C. Naftel, F. D. Pagani, R. L. Kormos, L. W. Stevenson, E. D. Blume, S. L. Myers, M. A. Miller, J. T. Baldwin, and J. B. Young. Seventh INTERMACS annual report: 15,000 patients and counting. J. Heart Lung Transplant. 34:1495–1504, 2015.

    Article  PubMed  Google Scholar 

  16. Kwan-Gett, C., M. Crosby, A. Schoenberg, S. Jacobsen, and W. Kolff. Control systems for artificial hearts. ASAIO J. 14:284–290, 1968.

    CAS  Google Scholar 

  17. Mansouri, M., R. F. Salamonsen, E. Lim, R. Akmeliawati, and N. H. Lovell. Preload-based starling-like control for rotary blood pumps: numerical comparison with pulsatility control and constant speed operation. PLoS ONE 10:e0121413, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Moscato, F., M. Granegger, M. Edelmayer, D. Zimpfer, and H. Schima. Continuous monitoring of cardiac rhythms in left ventricular assist device patients. Artif. Organs 38:191–198, 2014.

    Article  PubMed  Google Scholar 

  19. Moscato, F., M. Granegger, P. Naiyanetr, G. Wieselthaler, and H. Schima. Evaluation of left ventricular relaxation in rotary blood pump recipients using the pump flow waveform: a simulation study. Artif. Organs 36:470–478, 2012.

    Article  PubMed  Google Scholar 

  20. Naiyanetr, P., F. Moscato, M. Vollkron, D. Zimpfer, G. Wieselthaler, and H. Schima. Continuous assessment of cardiac function during rotary blood pump support: a contractility index derived from pump flow. J. Heart Lung Transplant. 29:37–44, 2010.

    Article  PubMed  Google Scholar 

  21. Ochsner, G., R. Amacher, A. Amstutz, A. Plass, M. S. Daners, H. Tevaearai, S. Vandenberghe, M. J. Wilhelm, and L. Guzzella. A novel interface for hybrid mock circulations to evaluate ventricular assist devices. IEEE Trans. Biomed. Eng. 60:507–516, 2013.

    Article  PubMed  Google Scholar 

  22. Ochsner, G., R. Amacher, M. J. Wilhelm, S. Vandenberghe, H. Tevaearai, A. Plass, A. Amstutz, V. Falk, and M. Schmid Daners. A physiological controller for turbodynamic ventricular assist devices based on a measurement of the left ventricular volume. Artif. Organs 38:527–538, 2013.

    Article  PubMed  Google Scholar 

  23. Ochsner, G., M. J. Wilhelm, R. Amacher, A. Petrou, N. Cesarovic, S. Staufert, B. Röhrnbauer, F. Maisano, C. Hierold, M. Meboldt, et al. In vivo evaluation of physiological control algorithms for LVADs based on left ventricular volume or pressure. ASAIO J. 63:568–577, 2017.

    Article  PubMed  Google Scholar 

  24. Ooi, H.-L., S.-C. Ng, E. Lim, R. F. Salamonsen, A. P. Avolio, and N. H. Lovell. Robust aortic valve non-opening detection for different cardiac conditions. Artif. organs 38:E57–E67, 2014.

    Article  PubMed  Google Scholar 

  25. Pauls, J. P., M. C. Stevens, N. Bartnikowski, J. F. Fraser, S. D. Gregory, and G. Tansley. Evaluation of physiological control systems for rotary left ventricular assist devices: an in vitro study. Ann. Biomed. Eng. 44:2377–2387, 2016.

    Article  PubMed  Google Scholar 

  26. Petrou, A., G. Ochsner, R. Amacher, P. Pergantis, M. Rebholz, M. Meboldt, and M. Schmid. Daners. A physiological controller for turbodynamic ventricular assist devices based on left ventricular systolic pressure. Artif. Organs 40:842–855, 2016.

    Article  PubMed  Google Scholar 

  27. Salamonsen, R. F., E. Lim, N. Gaddum, A.-H. H. AlOmari, S. D. Gregory, M. Stevens, D. G. Mason, J. F. Fraser, D. Timms, M. K. Karunanithi, et al. Theoretical foundations of a starling-like controller for rotary blood pumps. Artif. Organs 36:787–796, 2012.

    Article  PubMed  Google Scholar 

  28. Schima, H., K. Dimitrov, and D. Zimpfer. Debate: creating adequate pulse with a continuous flow ventricular assist device: can it be done and should it be done? probably not, it may cause more problems than benefits!. Curr. Opin. Cardiol. 31:337–342, 2016.

    Article  PubMed  Google Scholar 

  29. Schmid Daners, M., F. Kaufmann, R. Amacher, G. Ochsner, M. J. Wilhelm, A. Ferrari, E. Mazza, D. Poulikakos, M. Meboldt, and V. Falk. Left ventricular assist devices: challenges toward sustaining long-term patient care. Ann. Biomed. Eng. 45:1836–1851, 2017.

    Article  PubMed  Google Scholar 

  30. Staufert, S., and C. Hierold. Novel sensor integration approach for blood pressure sensing in ventricular assist devices. Procedia Eng. 168:71–75, 2016.

    Article  CAS  Google Scholar 

  31. Stevens, M. C., N. R. Gaddum, M. Pearcy, R. F. Salamonsen, D. L. Timms, D. G. Mason, and J. F. Fraser. Frank-starling control of a left ventricular assist device. In: Conf Proc IEEE Eng Med Biol Soc, pp. 1335–1338, IEEE 2011.

  32. Tchantchaleishvili, V., J. G. Luc, C. M. Cohan, K. Phan, L. Hübbert, S. W. Day, and H. T. Massey. Clinical implications of physiological flow adjustment in continuous-flow left ventricular assist devices. ASAIO J. 63:214–250, 2017.

    Google Scholar 

  33. Ündar, A. Myths and truths of pulsatile and nonpulsatile perfusion during acute and chronic cardiac support. Artif. Organs 28:439–443, 2004.

    Article  PubMed  Google Scholar 

  34. Vollkron, M., H. Schima, L. Huber, R. Benkowski, G. Morello, and G. Wieselthaler. Development of a reliable automatic speed control system for rotary blood pumps. J. Heart Lung Transplant. 24:1878–1885, 2005.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support by the Stavros Niarchos Foundation. This work is part of the Zurich Heart project under the umbrella of University Medicine Zurich.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marianne Schmid Daners.

Additional information

Associate Editor Umberto Morbiducci oversaw the review of this article.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 578 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petrou, A., Monn, M., Meboldt, M. et al. A Novel Multi-objective Physiological Control System for Rotary Left Ventricular Assist Devices. Ann Biomed Eng 45, 2899–2910 (2017). https://doi.org/10.1007/s10439-017-1919-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-017-1919-0

Keywords

Navigation