Skip to main content
Log in

Kinematic Outcome Measures using Target-Reaching Arm Movement in Stroke

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

This study aimed to quantitatively investigate upper extremity motor performance and disclose the abnormality of motor control induced by stroke. Ten patients and ten healthy subjects were instructed to perform target-reaching tasks at nine difficulty levels, and coordinates of the shoulder, elbow and tip of the index finger were recorded. Age-matched control performed significantly better than patients, as indicated by lower movement time (MT) and normalized jerk score (NJS) and higher peak velocity (V peak), percentage time to peak velocity (PTPV), fuzzy approximate entropy (fApEn) and relative joint angles correlation (RJAC); also, significant effects of difficulty on all parameters except RJAC and fApEn, were observed in two groups. There were significant correlations between PTPV and Fugl-Meyer assessment for upper extremity (FMA-UE) and between RJAC and FMA-UE at certain difficulty levels. The stroke-related differences could be explained by the increase in intrinsic neuromotor noise, and the difficulty-related differences may be related to extrinsic neuromotor noise. The increase in either noises could result in a degradation in motor control. The significant linear relationships between some kinematic parameters and the clinical score suggested that the kinematic parameters could be applied as quantitative outcome measures in the clinic in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Ao, D., R. Sun, K. Y. Tong, and R. Song. Characterization of stroke-and aging-related changes in the complexity of EMG signals during tracking tasks. Ann. Biomed. Eng. 43:990–1002, 2015.

    Article  PubMed  Google Scholar 

  2. Berthier, N. E., R. K. Clifton, V. Gullapalli, D. D. McCall, and D. J. Robin. Visual information and object size in the control of reaching. J. Mot. Behav 28:187–197, 1996.

    Article  PubMed  Google Scholar 

  3. Buck, D., A. Jacoby, A. Massey, and G. Ford. Evaluation of measures used to assess quality of life after stroke. Stroke 31:2004–2010, 2000.

    Article  CAS  PubMed  Google Scholar 

  4. Chang, J. J., T. I. Wu, W. L. Wu, and F. C. Su. Kinematical measure for spastic reaching in children with cerebral palsy. Clin. Biomech. 20:381–388, 2005.

    Article  Google Scholar 

  5. Cozens, J. A., and B. B. Bhakta. Measuring movement irregularity in the upper motor neurone syndrome using normalised average rectified jerk. J. Electromyogr. Kinesiol. 13:73–81, 2003.

    Article  PubMed  Google Scholar 

  6. Desmurget, M., and S. Grafton. Forward modeling allows feedback control for fast reaching movements. Trends Cogn. Sci. 4:423–431, 2000.

    Article  CAS  PubMed  Google Scholar 

  7. Dipietro, L., H. I. Krebs, S. E. Fasoli, B. T. Volpe, J. Stein, C. Bever, and N. Hogan. Changing motor synergies in chronic stroke. J. Neurophysiol. 98:757–768, 2007.

    Article  CAS  PubMed  Google Scholar 

  8. Fitts, P. M. The information capacity of the human motor system in controlling the amplitude of movement. J. Exp. Psychol. 47:381, 1954.

    Article  CAS  PubMed  Google Scholar 

  9. Geddes, J., J. Fear, A. Tennant, A. Pickering, M. Hillman, and M. A. Chamberlain. Prevalence of self reported stroke in a population in northern England. J. Epidemiol. Community Health 50:140–143, 1996.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hall, K. M., N. Mann, W. M. High, Jr, J. Wright, J. S. Kreutzer, and D. Wood. Functional measures after traumatic brain injury: Ceiling effects of FIM, FIM + FAM, DRS, and CIQ. J. Head Trauma Rehabil. 11:27–39, 1996.

    Article  Google Scholar 

  11. Hammond, M., S. Fitts, G. Kraft, P. Nutter, M. Trotter, and L. Robinson. Co-contraction in the hemiparetic forearm: quantitative EMG evaluation. Arch. Phys. Med. Rehabil. 69:348–351, 1988.

    CAS  PubMed  Google Scholar 

  12. Hermsdörfer, J., E. Hagl, and D. A. Nowak. Deficits of anticipatory grip force control after damage to peripheral and central sensorimotor systems. Hum. Mov. Sci. 23:643–662, 2004.

    Article  PubMed  Google Scholar 

  13. Hong, S. L., and K. M. Newell. Visual information gain and the regulation of constant force levels. Exp. Brain Res. 189:61–69, 2008.

    Article  Google Scholar 

  14. Kudoh, N., M. Hattori, N. Numata, and K. Maruyama. An analysis of spatiotemporal variability during prehension movements: effects of object size and distance. Exp. Brain Res. 117:457–464, 1997.

    Article  CAS  PubMed  Google Scholar 

  15. Kwakkel G., B. J. Kollen and H. I. Krebs. Effects of robot-assisted therapy on upper limb recovery after stroke: a systematic review. Neurorehabil. Neural Repair 2007.

  16. Maitra, K. K., and M. D. Junkins. Upper extremity movement pattern of a common drinking task in well elderly women: a pilot study. Occup. Ther. Int. 11:67–81, 2004.

    Article  PubMed  Google Scholar 

  17. McCrea, P. H., and J. J. Eng. Consequences of increased neuromotor noise for reaching movements in persons with stroke. Exp. Brain Res. 162:70–77, 2005.

    Article  PubMed  Google Scholar 

  18. Miall, R. C., D. Weir, and J. Stein. Intermittency in human manual tracking tasks. J. Mot. Behav. 25:53–63, 1993.

    Article  CAS  PubMed  Google Scholar 

  19. Murphy, M. A., K. S. Sunnerhagen, B. Johnels, and C. Willén. Three-dimensional kinematic motion analysis of a daily activity drinking from a glass: a pilot study. J. Neuroeng. Rehabil. 3:1, 2006.

    Article  Google Scholar 

  20. Murphy, M. A., C. Willén, and K. S. Sunnerhagen. Kinematic variables quantifying upper-extremity performance after stroke during reaching and drinking from a glass. Neurorehabil. Neural Repair 25:71–80, 2011.

    Article  Google Scholar 

  21. Nagasaki, H. Asymmetric velocity and acceleration profiles of human arm movements. Exp. Brain Res. 74:319–326, 1989.

    Article  CAS  PubMed  Google Scholar 

  22. Naik, S. K., C. Patten, N. Lodha, S. A. Coombes, and J. H. Cauraugh. Force control deficits in chronic stroke: grip formation and release phases. Exp. Brain Res. 211:1–15, 2011.

    Article  PubMed  Google Scholar 

  23. Nordin, N., S. Q. Xie, and B. Wünsche. Assessment of movement quality in robot-assisted upper limb rehabilitation after stroke: a review. J. Neuroeng. Rehabil. 11:137, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Pohl, P. S., C. J. Winstein, and B. E. Fisher. The locus of age-related movement slowing: sensory processing in continuous goal-directed aiming. J. Gerontol. Ser. B Psychol. Sci. Soc. Sci. 51:P94–P102, 1996.

    Article  CAS  Google Scholar 

  25. Przybyla, A., K. Y. Haaland, L. B. Bagesteiro, and R. L. Sainburg. Motor asymmetry reduction in older adults. Neurosci. Lett. 489:99–104, 2011.

    Article  CAS  PubMed  Google Scholar 

  26. Reft, J., and Z. Hasan. Trajectories of target reaching arm movements in individuals with spinal cord injury: effect of external trunk support. Spinal Cord 40:186–191, 2002.

    Article  CAS  PubMed  Google Scholar 

  27. Roby-Brami, A., A. Feydy, M. Combeaud, E. Biryukova, B. Bussel, and M. Levin. Motor compensation and recovery for reaching in stroke patients. Acta Neurol. Scand. 107:369–381, 2003.

    Article  CAS  PubMed  Google Scholar 

  28. Romilly, D. P., C. Anglin, R. G. Gosine, C. Hershler, and S. U. Raschke. A functional task analysis and motion simulation for the development of a powered upper-limb orthosis. IEEE Trans. Rehabil. Eng. 2:119–129, 1994.

    Article  Google Scholar 

  29. Sivan, M., R. J. O’Connor, S. Makower, M. Levesley, and B. Bhakta. Systematic review of outcome measures used in the evaluation of robot-assisted upper limb exercise in stroke. J. Rehabil. Med. 43:181–189, 2011.

    Article  PubMed  Google Scholar 

  30. Skilbeck, C. E., D. T. Wade, R. L. Hewer, and V. A. Wood. Recovery after stroke. J. Neurol. Neurosurg. Psychiatry 46:5–8, 1983.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sokunbi, M. O., G. G. Cameron, T. S. Ahearn, A. D. Murray, and R. T. Staff. Fuzzy approximate entropy analysis of resting state fmri signal complexity across the adult life span. Med. Eng. Phys. 37:1082–1090, 2015.

    Article  PubMed  Google Scholar 

  32. Sternad, D., M. O. Abe, X. Hu, and H. Müller. Neuromotor noise, error tolerance and velocity-dependent costs in skilled performance. PLoS Comput Biol 7:e1002159, 2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Todor, J. I., and J. Cisneros. Accommodation to increased accuracy demands by the right and left hands. J. Mot. Behav. 17:355–372, 1985.

    Article  CAS  PubMed  Google Scholar 

  34. van Beers, R. J., P. Haggard, and D. M. Wolpert. The role of execution noise in movement variability. J. Neurophysiol. 91:1050–1063, 2004.

    Article  PubMed  Google Scholar 

  35. van Meulen, F. B., J. Reenalda, J. H. Buurke, and P. H. Veltink. Assessment of daily-life reaching performance after stroke. Ann. Biomed. Eng. 43:478–486, 2015.

    Article  PubMed  Google Scholar 

  36. Welford, A. T. Signal, noise, performance, and age. Hum. Factors: J. Hum. Factors Ergon. Soc. 23:97–109, 1981.

    Article  CAS  Google Scholar 

  37. Xie, H. B., J. Y. Guo, and Y. P. Zheng. Fuzzy approximate entropy analysis of chaotic and natural complex systems: detecting muscle fatigue using electromyography signals. Ann. Biomed. Eng. 38:1483–1496, 2010.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank participants in the stroke rehabilitation teams of the First Affiliated Hospital of Sun Yat-sen University and the Sun Yat-sen Memorial Hospital, their enthusiastic participation in this study are gratefully appreciated. The project has been carried out with financial support from the National Natural Science Foundation of China (Grant No. 61273359 and 91520201), Guangdong Science and Technology Planning Project (Grant No. 2014B090901056 and 2015B020214003), and Guangzhou Key Lab of Body Data Science (Grant No. 201605030011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rong Song.

Additional information

Associate Editor Xiaoxiang Zheng oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Q., Yang, Y., Luo, J. et al. Kinematic Outcome Measures using Target-Reaching Arm Movement in Stroke. Ann Biomed Eng 45, 2794–2803 (2017). https://doi.org/10.1007/s10439-017-1912-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-017-1912-7

Keywords

Navigation