Skip to main content

Advertisement

Log in

The Feasibility of Enhancing Susceptibility of Glioblastoma Cells to IRE Using a Calcium Adjuvant

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Irreversible electroporation (IRE) is a cellular ablation method used to treat a variety of cancers. IRE works by exposing tissues to pulsed electric fields which cause cell membrane disruption. Cells exposed to lower energies become temporarily permeable while greater energy exposure results in cell death. For IRE to be used safely in the brain, methods are needed to extend the area of ablation without increasing applied voltage, and thus, thermal damage. We present evidence that IRE used with adjuvant calcium (5 mM CaCl2) results in a nearly twofold increase in ablation area in vitro compared to IRE alone. Adjuvant 5 mM CaCl2 induces death in cells reversibly electroporated by IRE, thereby lowering the electric field thresholds required for cell death to nearly half that of IRE alone. The calcium-induced death response of reversibly electroporated cells is confirmed by electrochemotherapy pulses which also induced cell death with calcium but not without. These findings, combined with our numerical modeling, suggest the ability to ablate up to 3.2× larger volumes of tissue in vivo when combining IRE and calcium. The ability to ablate a larger volume with lowered energies would improve the efficacy and safety of IRE therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Agerholm-Larsen, B., H. K. Iversen, P. Ibsen, J. M. Moller, F. Mahmood, K. S. Jensen, J. Gehl, K. Svarre Jensen, and J. Gehl. Preclinical validation of electrochemotherapy as an effective treatment for brain tumors. Cancer Res. 71:3753–3762, 2011.

    Article  CAS  PubMed  Google Scholar 

  2. Al-Sakere, B., F. André, C. Bernat, E. Connault, P. Opolon, R. V. Davalos, B. Rubinsky, and L. M. Mir. Tumor ablation with irreversible electroporation. PLoS ONE 2:1–8, 2007.

    Article  Google Scholar 

  3. Arena, C. B., C. S. Szot, P. A. Garcia, M. N. Rylander, and R. V. Davalos. A three-dimensional in vitro tumor platform for modeling therapeutic irreversible electroporation. Biophys. J. 103:2033–2042, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bergman, T. L., A. S. Lavine, F. P. Incropera, and D. P. Dewitt. Fundamentals of Heat and Mass Transfer (7th ed.). Hoboken: Wiley, 2011.

    Google Scholar 

  5. Bhatt, D. L., D. C. Gaylor, and R. C. Lee. Rhabdomyolysis due to pulsed electric fields. Plast. Reconstr. Surg. 86:1–11, 1990.

    Article  CAS  PubMed  Google Scholar 

  6. Bier, M., S. M. Hammer, D. J. Canaday, and R. C. Lee. Kinetics of sealing for transient electropores in isolated mammalian skeletal muscle cells. Bioelectromagnetics 20:194–201, 1999.

    Article  CAS  PubMed  Google Scholar 

  7. Bonakdar, M., E. M. Wasson, Y. W. Lee, and R. V. Davalos. Electroporation of brain endothelial cells on chip toward permeabilizing the blood-brain barrier. Biophys. J. 110:503–513, 2016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chiche, J., M. C. Brahimi-Horn, and J. Pouysségur. Tumour hypoxia induces a metabolic shift causing acidosis: a common feature in cancer. J. Cell. Mol. Med. 14:771–794, 2010.

    Article  CAS  PubMed  Google Scholar 

  9. Davalos, R. V., B. Rubinsky, and L. M. Mir. Theoretical analysis of the thermal effects during in vivo tissue electroporation. Bioelectrochemistry 61:99–107, 2003.

    Article  CAS  PubMed  Google Scholar 

  10. Duck, F. A. Physical Properties of Tissue: A Comprehensive Reference Book. London: Academic Press, 1990.

    Google Scholar 

  11. Edd, J. F., L. Horowitz, R. V. Davalos, L. M. Mir, and B. Rubinsky. In vivo results of a new focal tissue ablation technique: irreversible electroporation. IEEE Trans. Biomed. Eng. 53:1409–1415, 2006.

    Article  PubMed  Google Scholar 

  12. Ellis, T. L., P. A. Garcia, J. H. Rossmeisl, N. Henao-Guerrero, J. Robertson, and R. V. Davalos. Nonthermal irreversible electroporation for intracranial surgical applications. Laboratory investigation. J. Neurosurg. 114:681–688, 2011.

    Article  PubMed  Google Scholar 

  13. Fischbach, C., R. Chen, T. Matsumoto, T. Schmelzle, J. S. Brugge, P. J. Polverini, and D. J. Mooney. Engineering tumors with 3D scaffolds. Nat. Methods 4:855–860, 2007.

    Article  CAS  PubMed  Google Scholar 

  14. Frandsen, S. K., H. Gissel, P. Hojman, T. Tramm, J. Eriksen, and J. Gehl. Direct therapeutic applications of calcium electroporation to effectively induce tumor necrosis. Cancer Res. 72:1336–1341, 2012.

    Article  CAS  PubMed  Google Scholar 

  15. Garcia, P. A., R. E. Neal, J. H. Rossmeisl, and R. V. Davalos. Non-thermal irreversible electroporation for deep intracranial disorders. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2743–2746, 2010.

  16. Garcia, P. A., J. H. Rossmeisl, R. E. Neal, T. L. Ellis, and R. V. Davalos. A parametric study delineating irreversible electroporation from thermal damage based on a minimally invasive intracranial procedure. Biomed. Eng. Online 10:34, 2011.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Garcia, P. A., J. H. Rossmeisl, R. E. Neal, T. L. Ellis, J. D. Olson, N. Henao-Guerrero, J. Robertson, and R. V. Davalos. Intracranial nonthermal irreversible electroporation: in vivo analysis. J. Membr. Biol. 236:127–136, 2010.

    Article  CAS  PubMed  Google Scholar 

  18. Gehl, J. Electroporation: theory and methods, perspectives for drug delivery, gene therapy and research. Acta Physiol. Scand. 177:437–447, 2003.

    Article  CAS  PubMed  Google Scholar 

  19. Gerweck, L. E., and K. Seetharaman. Cellular pH gradient in tumor versus normal tissue: potential exploitation for the treatment of cancer. Cancer Res. 56:1194–1198, 1996.

    CAS  PubMed  Google Scholar 

  20. Gissel, H., and T. Clausen. Ca2+ uptake and cellular integrity in rat EDL muscle exposed to electrostimulation, electroporation, or A23187. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 285:R132–R142, 2003.

    Article  CAS  PubMed  Google Scholar 

  21. Gothelf, A., L. M. Mir, and J. Gehl. Electrochemotherapy: results of cancer treatment using enhanced delivery of bleomycin by electroporation. Cancer Treat. Rev. 29:371–387, 2003.

    Article  CAS  PubMed  Google Scholar 

  22. Hansen, E. L., E. B. Sozer, S. Romeo, S. K. Frandsen, P. T. Vernier, and J. Gehl. Dose-dependent ATP depletion and cancer cell death following calcium electroporation, relative effect of calcium concentration and electric field strength. PLoS ONE 10:e0122973, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Hjelmeland, A. B., Q. Wu, J. M. Heddleston, G. S. Choudhary, J. MacSwords, J. D. Lathia, R. McLendon, D. Lindner, A. Sloan, and J. N. Rich. Acidic stress promotes a glioma stem cell phenotype. Cell Death Differ. 18:829–840, 2011.

    Article  CAS  PubMed  Google Scholar 

  24. Ivey, J. W., E. L. Latouche, M. B. Sano, J. H. Rossmeisl, R. V. Davalos, and S. S. Verbridge. Targeted cellular ablation based on the morphology of malignant cells. Sci. Rep. 5:17157, 2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ivorra, A., B. Al-Sakere, B. Rubinsky, and L. M. Mir. In vivo electrical conductivity measurements during and after tumor electroporation: conductivity changes reflect the treatment outcome. Phys. Med. Biol. 54:5949–5963, 2009.

    Article  PubMed  Google Scholar 

  26. Lacković, I., R. Magjarević, and D. Miklavćić. Three-dimensional finite-element analysis of joule heating in electrochemotherapy and in vivo gene electrotransfer. IEEE Trans. Dielectr. Electr. Insul. 16:1338–1347, 2009.

    Article  Google Scholar 

  27. Lee, R. C., D. J. Canaday, and S. M. Hammer. Transient and stable ionic permeabilization of isolated skeletal muscle cells after electrical shock. J. Burn Care Rehabil. 14:528–540, 1993.

    Article  CAS  PubMed  Google Scholar 

  28. Li, W., Q. Fan, Z. Ji, X. Qiu, and Z. Li. The effects of irreversible electroporation (IRE) on nerves. PLoS ONE 6:e18831, 2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Linnert, M., and J. Gehl. Bleomycin treatment of brain tumors: an evaluation. Anticancer Drugs 20:157–164, 2009.

    Article  CAS  PubMed  Google Scholar 

  30. Miklavčič, D., D. Šemrov, H. Mekid, and L. M. Mir. A validated model of in vivo electric field distribution in tissues for electrochemotherapy and for DNA electrotransfer for gene therapy. Biochim. Biophys. Acta 1523:73–83, 2000.

    Article  PubMed  Google Scholar 

  31. Neal, R. E., J. H. Rossmeisl, V. D’Alfonso, J. L. Robertson, P. A. Garcia, S. Elankumaran, and R. V. Davalos. In vitro and numerical support for combinatorial irreversible electroporation and electrochemotherapy glioma treatment. Ann. Biomed. Eng. 42:475–487, 2014.

    Article  PubMed  Google Scholar 

  32. Neal, R. E., J. H. Rossmeisl, P. A. Garcia, O. I. Lanz, N. Henao-Guerrero, and R. V. Davalos. Successful treatment of a large soft tissue sarcoma with irreversible electroporation. J. Clin. Oncol. 29:e372–e377, 2011.

    Article  PubMed  Google Scholar 

  33. Pucihar, G., T. Kotnik, M. Kandušer, and D. Miklavčič. The influence of medium conductivity on electropermeabilization and survival of cells in vitro. Bioelectrochemistry 54:107–115, 2001.

    Article  CAS  PubMed  Google Scholar 

  34. Rossmeisl, J. H., P. A. Garcia, T. E. Pancotto, J. L. Robertson, N. Henao-Guerrero, R. E. Neal, T. L. Ellis, and R. V. Davalos. Safety and feasibility of the NanoKnife system for irreversible electroporation ablative treatment of canine spontaneous intracranial gliomas. J. Neurosurg. 123:1008–1025, 2015.

    Article  PubMed  Google Scholar 

  35. Rubinsky, B. Irreversible electroporation in medicine. Technol. Cancer Res. Treat. 6:255–259, 2007.

    Article  PubMed  Google Scholar 

  36. Salford, L. G., B. R. R. Persson, A. Brun, C. P. Ceberg, P. C. Kongstad, and L. M. Mir. A new brain tumor therapy combining bleomycin with in vivo electropermeabilization. Biochem. Biophys. Res. Commun. 194:938–943, 1993.

    Article  CAS  PubMed  Google Scholar 

  37. Schoellnast, H., S. Monette, P. C. Ezell, A. Deodhar, M. Maybody, J. P. Erinjeri, M. D. Stubblefield, G. W. Single, W. C. Hamilton, and S. B. Solomon. Acute and subacute effects of irreversible electroporation on nerves: experimental study in a pig model. Radiology 260:421–427, 2011.

    Article  PubMed  Google Scholar 

  38. Sel, D., D. Cukjati, D. Batiuskaite, T. Slivnik, L. Mir, and D. Miklavcic. Sequential finite element model of tissue electropermeabilisation. Conf. Proc. IEEE Eng. Med. Biol. Soc. 5:3551–3554, 2004.

    PubMed  Google Scholar 

  39. Stewart, L. A. Chemotherapy in adult high-grade glioma: a systematic review and meta-analysis of individual patient data from 12 randomised trials. Lancet 359:1011–1018, 2002.

    Article  CAS  PubMed  Google Scholar 

  40. Stupp, R., W. Mason, M. J. van den Bent, M. Weller, B. M. Fisher, M. J. B. Taphoorn, K. Belanger, A. A. Brandes, C. Marosi, U. Bogdahn, J. Curschmann, R. C. Janzer, S. K. Ludwin, T. Gorlia, A. Allgeier, D. Lacombe, G. Cairncross, E. Eisenhauer, and R. O. Mirimanoff. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N. Engl. J. Med. 352:987–996, 2005.

    Article  CAS  PubMed  Google Scholar 

  41. Uzuka, T., R. Tanaka, H. Takahashi, K. Kakinuma, J. Matsuda, and K. Kato. Planning of hyperthermic treatment for malignant glioma using computer simulation. Int. J. Hyperth. 17:114–122, 2001.

    Article  CAS  Google Scholar 

  42. Werner, J., and M. Buse. Temperature profiles with respect to inhomogeneity and geometry of the human body. J. Appl. Physiol. 65:1110–1118, 1988.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the NSF Graduate Research Fellowship Program under Grant No. DGE-1651272, the National Cancer Institute of the National Institutes of Health under Award R01CA213423, the Institute for Critical Technology and Applied Science (ICTAS) of Virginia Tech, Wake Forest Comprehensive Cancer Center and NSF CAREER Awards CBET-1055913 and CBET-1652112.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisa M. Wasson.

Additional information

Associate Editor Dan Elson oversaw the review of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1832 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wasson, E.M., Ivey, J.W., Verbridge, S.S. et al. The Feasibility of Enhancing Susceptibility of Glioblastoma Cells to IRE Using a Calcium Adjuvant. Ann Biomed Eng 45, 2535–2547 (2017). https://doi.org/10.1007/s10439-017-1905-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-017-1905-6

Keywords

Navigation