Advertisement

Annals of Biomedical Engineering

, Volume 45, Issue 11, pp 2524–2534 | Cite as

A Comprehensive Characterization of Parameters Affecting High-Frequency Irreversible Electroporation Lesions

  • Tyler Miklovic
  • Eduardo L. Latouche
  • Matthew R. DeWitt
  • Rafael V. Davalos
  • Michael B. SanoEmail author
Article

Abstract

Several focal therapies are being investigated clinically to treat tumors in which surgery is contraindicated. Many of these ablation techniques, such as radiofrequency ablation and microwave ablation, rely on thermal damage mechanisms which can put critical nerves or vasculature at risk. Irreversible electroporation (IRE) is a minimally invasive, non-thermal technique to destroy tumors. A series of short electric pulses create nanoscale defects in the cell membrane, eventually leading to cell death. Typical IRE protocols deliver a series of 50–100 µs monopolar pulses. High frequency IRE (H-FIRE) aims to replace these monopolar pulses with integrated bursts of 0.25–10 µs bipolar pulses. Here, we examine ablations created using a broad array of IRE and H-FIRE protocols in a potato tissue phantom model. Our results show that H-FIRE pulses require a higher energy dose to create equivalent lesions to standard IRE treatment protocols. We show that ablations in potato do not increase when more than 40 H-FIRE bursts are delivered. These results show that H-FIRE treatment protocols can be optimized to produce clinically relevant lesions while maintaining the benefits of a non-thermal ablation technique.

Keywords

Focal ablation Non-thermal therapy H-FIRE Tissue phantom 

Notes

Acknowledgments

This work was supported in part by the NSF through GRFP, STTR 1346343 and IIP 12655105, the Virginia Center for Innovative Technology (VA-CIT) through MF13-034-LS, the NIH through R21 CA192042-01, and the DOD through the Prostate Cancer Research Program (PCRP) Postdoctoral Training Award W81XWH-15-1-0137. The authors would also like to thank the Virginia Tech Institute for Critical Technologies and Applied Sciences (ICTAS), the Virginia Tech-Knowledge Works, and the Virginia Tech Corporate Research Center (VT-CRC) for their support of this Project.

Conflicts of interest

MBS, ELL, MRD, and RVD have accepted/pending patents on IRE based technologies. All other authors have no conflicts to report.

Supplementary material

10439_2017_1889_MOESM1_ESM.tif (335 kb)
Supplementary material 1 (TIFF 335 kb)
10439_2017_1889_MOESM2_ESM.tif (3.3 mb)
Supplementary material 2 (TIFF 3361 kb)
10439_2017_1889_MOESM3_ESM.tif (4 mb)
Supplementary material 3 (TIFF 4136 kb)
10439_2017_1889_MOESM4_ESM.tif (1.2 mb)
Supplementary material 4 (TIFF 1270 kb)

References

  1. 1.
    Heller, L. C., and R. Heller. In vivo electroporation for gene therapy. Hum. Gene Ther. 17:890–897, 2006.CrossRefPubMedGoogle Scholar
  2. 2.
    Ivorra, A., L. M. Mir, and B. Rubinsky. Electric field redistribution due to conductivity changes during tissue electroporation: experiments with a simple vegetal model. IFMBE Proc. 25:59–62, 2009.CrossRefGoogle Scholar
  3. 3.
    Miklavcic, D., B. Mali, B. Kos, R. Heller, and G. Sersa. Electrochemotherapy: from the drawing board into medical practice. Biomed. Eng. Online 2014. doi: 10.1186/1475-925X-13-29.PubMedPubMedCentralGoogle Scholar
  4. 4.
    Yarmush, M. L., A. Golberg, G. Sersa, T. Kotnik, and D. Miklavcic. Electroporation-based technologies for medicine: principles, applications, and challenges. Annu. Rev. Biomed. Eng. 16:295–320, 2014.CrossRefPubMedGoogle Scholar
  5. 5.
    Jaroszeski, M. J., et al. Toxicity of anticancer agents mediated by electroporation in vitro. Anti-cancer Drug 11:201–208, 2000.CrossRefGoogle Scholar
  6. 6.
    Dean, D. A. Nonviral gene transfer to skeletal, smooth, and cardiac muscle in living animals. Am. J. Physiol. Cell Physiol. 289:C233–C245, 2005.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Davalos, R. V., L. M. Mir, and B. Rubinsky. Tissue ablation with irreversible electroporation. Ann. Biomed. Eng. 33:223–231, 2005.CrossRefPubMedGoogle Scholar
  8. 8.
    Jiang, C. L., R. V. Davalos, and J. C. Bischof. A review of basic to clinical studies of irreversible electroporation therapy. IEEE Trans. Biomed. Eng. 62:4–20, 2015.CrossRefPubMedGoogle Scholar
  9. 9.
    Chu, K. F., and D. E. Dupuy. Thermal ablation of tumours: biological mechanisms and advances in therapy. Nat. Rev. Cancer 14:199–208, 2014.CrossRefPubMedGoogle Scholar
  10. 10.
    Siddiqui, I. A., et al. High-frequency irreversible electroporation: safety and efficacy of next-generation irreversible electroporation adjacent to critical hepatic structures. Surg. Innov. 2017. doi: 10.1177/1553350617692202.PubMedGoogle Scholar
  11. 11.
    Scheffer, H. J., et al. Irreversible electroporation for nonthermal tumor ablation in the clinical setting: a systematic review of safety and efficacy. J. Vasc. Interv. Radiol. 25:997–1011, 2014.CrossRefPubMedGoogle Scholar
  12. 12.
    Garcia, P. A., et al. Non-thermal irreversible electroporation (N-TIRE) and adjuvant fractionated radiotherapeutic multimodal therapy for intracranial malignant glioma in a canine patient. Technol. Cancer Res. Treat. 10:73–83, 2011.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Garcia, P. A., J. H. Rossmeisl Jr., T. L. Ellis, and R. V. Davalos. Nonthermal irreversible electroporation as a focal ablation treatment for brain cancer. In: Tumors of the Central Nervous System, Volume 12. Dordrecht: Springer, pp. 171–182, 2014.Google Scholar
  14. 14.
    Martin, R. C., E. Schwartz, J. Adams, I. Farah, and B. M. Derhake. Intra-operative anesthesia management in patients undergoing surgical irreversible electroporation of the pancreas, liver, kidney, and retroperitoneal tumors. Anesthesiol. Pain Med. 5:e22786, 2015.CrossRefGoogle Scholar
  15. 15.
    Bower, M., L. Sherwood, Y. Li, and R. Martin. Irreversible electroporation of the pancreas: definitive local therapy without systemic effects. J. Surg. Oncol. 104:22–28, 2011.CrossRefPubMedGoogle Scholar
  16. 16.
    Scheffer, H. J., et al. Irreversible electroporation for nonthermal tumor ablation in the clinical setting: a systematic review of safety and efficacy. J. Vasc. Interv. Radiol. 2014. doi: 10.1016/j.jvir.2014.01.028.Google Scholar
  17. 17.
    Cheung, W., et al. Irreversible electroporation for unresectable hepatocellular carcinoma: initial experience and review of safety and outcomes. Technol. Cancer Res. Treat. 12:233, 2013.CrossRefPubMedGoogle Scholar
  18. 18.
    Cannon, R., S. Ellis, D. Hayes, G. Narayanan, and R. C. Martin. Safety and early efficacy of irreversible electroporation for hepatic tumors in proximity to vital structures. J. Surg. Oncol. 107:544–549, 2013.CrossRefPubMedGoogle Scholar
  19. 19.
    Martin, II, R. C., K. McFarland, S. Ellis, and V. Velanovich. Irreversible electroporation in locally advanced pancreatic cancer: potential improved overall survival. Ann. Surg. Oncol. 20:443–449, 2013.CrossRefGoogle Scholar
  20. 20.
    Martin, II, R. C., K. McFarland, S. Ellis, and V. Velanovich. Irreversible electroporation therapy in the management of locally advanced pancreatic adenocarcinoma. J. Am. Coll. Surg. 215:361–369, 2012.CrossRefPubMedGoogle Scholar
  21. 21.
    Usman, M., W. Moore, R. Talati, K. Watkins, and T. V. Bilfinger. Irreversible electroporation of lung neoplasm: a case series. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 18:CS43, 2012.Google Scholar
  22. 22.
    Garcia, P. A., et al. Intracranial nonthermal irreversible electroporation: in vivo analysis. J. Membr. Biol. 236:127–136, 2010.CrossRefPubMedGoogle Scholar
  23. 23.
    Pech, M., et al. Irreversible electroporation of renal cell carcinoma: a first-in-man phase I clinical study. Cardiovasc. Interv. Radiol. 34:132–138, 2011.CrossRefGoogle Scholar
  24. 24.
    Wendler, J. J., et al. Angiography in the isolated perfused kidney: radiological evaluation of vascular protection in tissue ablation by nonthermal irreversible electroporation. Cardiovasc. Interv. Radiol. 35:383–390, 2012.CrossRefGoogle Scholar
  25. 25.
    Wendler, J. J., et al. Urinary tract effects after multifocal nonthermal irreversible electroporation of the kidney: acute and chronic monitoring by magnetic resonance imaging, intravenous urography and urinary cytology. Cardiovasc. Interv. Radiol. 35:921–926, 2012.CrossRefGoogle Scholar
  26. 26.
    Wendler, J., et al. Short- and mid-term effects of irreversible electroporation on normal renal tissue: an animal model. Cardiovasc. Interv. Radiol. 36:512–520, 2013.CrossRefGoogle Scholar
  27. 27.
    Olweny, E. O., et al. Irreversible electroporation: evaluation of nonthermal and thermal ablative capabilities in the porcine kidney. Urology 81:679–684, 2013.CrossRefPubMedGoogle Scholar
  28. 28.
    Kingham, T. P., et al. Ablation of perivascular hepatic malignant tumors with irreversible electroporation. J. Am. Coll. Surg. 215:379–387, 2012.CrossRefPubMedGoogle Scholar
  29. 29.
    Charpentier, K. P. Irreversible electroporation for the ablation of liver tumors: are we there yet? Arch. Surg. 147:1053–1061, 2012.CrossRefPubMedGoogle Scholar
  30. 30.
    Lee, E. W., C. T. Loh, and S. T. Kee. Imaging guided percutaneous irreversible electroporation: ultrasound and immunohistological correlation. Technol. Cancer Res. Treat. 6:287–293, 2007.CrossRefPubMedGoogle Scholar
  31. 31.
    Rubinsky, B., G. Onik, and P. Mikus. Irreversible electroporation: a new ablation modality—clinical implications. Technol. Cancer Res. Treat. 6:37–48, 2007.CrossRefPubMedGoogle Scholar
  32. 32.
    Lee, E. W., et al. Advanced hepatic ablation technique for creating complete cell death: irreversible electroporation. Radiology 255:426–433, 2010.CrossRefPubMedGoogle Scholar
  33. 33.
    Ricke, J., et al. Irreversible electroporation (IRE) fails to demonstrate efficacy in a prospective multicenter phase II trial on lung malignancies: The ALICE trial. Cardiovasc. Interv. Radiol. 38:401–408, 2015.CrossRefGoogle Scholar
  34. 34.
    Daniels, C., and B. Rubinsky. Electrical field and temperature model of nonthermal irreversible electroporation in heterogeneous tissues. J. Biomech. Eng. Trans. ASME 2009. doi: 10.1115/1.3156808.Google Scholar
  35. 35.
    Arena, C. B., M. B. Sano, M. N. Rylander, and R. V. Davalos. Theoretical considerations of tissue electroporation with high-frequency bipolar pulses. IEEE Trans. Biomed. Eng. 58:1474–1482, 2011.CrossRefPubMedGoogle Scholar
  36. 36.
    Golberg, A., B. G. Bruinsma, B. E. Uygun, and M. L. Yarmush. Tissue heterogeneity in structure and conductivity contribute to cell survival during irreversible electroporation ablation by “electric field sinks”. Sci. Rep. 5:8485, 2015.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Gabriel, S., R. Lau, and C. Gabriel. The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz. Phys. Med. Biol. 41:2251, 1996.CrossRefPubMedGoogle Scholar
  38. 38.
    Bhonsle, S. P., C. B. Arena, D. C. Sweeney, and R. V. Davalos. Mitigation of impedance changes due to electroporation therapy using bursts of high-frequency bipolar pulses. Biomed. Eng. Online 2015. doi: 10.1186/1475-925X-14-S3-S3.PubMedPubMedCentralGoogle Scholar
  39. 39.
    Arena, C. B., et al. High-frequency irreversible electroporation (H-FIRE) for non-thermal ablation without muscle contraction. Biomed. Eng. Online 2011. doi: 10.1186/1475-925X-10-102.PubMedPubMedCentralGoogle Scholar
  40. 40.
    Weaver, J. C., K. C. Smith, A. T. Esser, R. S. Son, and T. Gowrishankar. A brief overview of electroporation pulse strength-duration space: a region where additional intracellular effects are expected. Bioelectrochemistry 2012. doi: 10.1016/j.bioelechem.2012.02.007.PubMedPubMedCentralGoogle Scholar
  41. 41.
    Sano, M. B., C. B. Arena, M. R. DeWitt, D. Saur, and R. V. Davalos. In-vitro bipolar nano- and microsecond electro-pulse bursts for irreversible electroporation therapies. Bioelectrochemistry 100:69–79, 2014.CrossRefPubMedGoogle Scholar
  42. 42.
    Kotnik, T., and D. Miklavčič. Theoretical evaluation of voltage inducement on internal membranes of biological cells exposed to electric fields. Biophys. J. 90:480–491, 2006.CrossRefPubMedGoogle Scholar
  43. 43.
    Tsong, T. Y. On electroporation of cell membranes and some related phenomena. J. Electroanal. Chem. Interfacial Electrochem. 299:271–295, 1990.CrossRefGoogle Scholar
  44. 44.
    Arena, C. B., C. S. Szot, P. A. Garcia, M. N. Rylander, and R. V. Davalos. A three-dimensional in vitro tumor platform for modeling therapeutic irreversible electroporation. Biophys. J. 103:2033–2042, 2012.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Sano, M. B., et al. Bursts of bipolar microsecond pulses inhibit tumor growth. Sci. Rep. 2015. doi: 10.1038/srep14999.Google Scholar
  46. 46.
    Sano, M. B., et al. Towards the creation of decellularized organ constructs using irreversible electroporation and active mechanical perfusion. Biomed. Eng. Online 9:83, 2010.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Edd, J. F., L. Horowitz, R. V. Davalos, L. M. Mir, and B. Rubinsky. In vivo results of a new focal tissue ablation technique: irreversible electroporation. IEEE Trans. Biomed. Eng. 53:1409–1415, 2006.CrossRefPubMedGoogle Scholar
  48. 48.
    Miklavčič, D., D. Šemrov, H. Mekid, and L. M. Mir. A validated model of in vivo electric field distribution in tissues for electrochemotherapy and for DNA electrotransfer for gene therapy. Biochim. Biophys. Acta Gen. Subj. 1523:73–83, 2000.CrossRefGoogle Scholar
  49. 49.
    Hjouj, M., and B. Rubinsky. Magnetic resonance imaging characteristics of nonthermal irreversible electroporation in vegetable tissue. J. Membr. Biol. 236:137–146, 2010.CrossRefPubMedGoogle Scholar
  50. 50.
    Neal, R. E., et al. In vivo irreversible electroporation kidney ablation: experimentally correlated numerical models. IEEE Trans. Biomed. Eng. 62:561–569, 2015.CrossRefPubMedGoogle Scholar
  51. 51.
    Neal, R. E., et al. In vivo characterization and numerical simulation of prostate properties for non-thermal irreversible electroporation ablation. Prostate 74:458–468, 2014.CrossRefPubMedGoogle Scholar
  52. 52.
    Makower, R., and S. Schwimmer. Inhibition of enzymic color formation in potato by adenosine triphosphate. Biochem. Biophys. Acta 14:156–157, 1954.CrossRefPubMedGoogle Scholar
  53. 53.
    Ivorra, A., L. Mir, and B. Rubinsky. Electric field redistribution due to conductivity changes during tissue electroporation: experiments with a simple vegetal model. In: World Congress on Medical Physics and Biomedical Engineering, 7–12 September 2009, Munich, Germany. Berlin: Springer, 2010, pp. 59–62.Google Scholar
  54. 54.
    Edd, J. F., and R. V. Davalos. Mathematical modeling of irreversible electroporation for treatment planning. Technol. Cancer Res. Treat. 6:275–286, 2007.CrossRefPubMedGoogle Scholar
  55. 55.
    Bonakdar, M., E. L. Latouche, R. L. Mahajan, and R. V. Davalos. The feasibility of a smart surgical probe for verification of IRE treatments using electrical impedance spectroscopy. IEEE Trans. Biomed. Eng. 62:2674–2684, 2015.CrossRefPubMedGoogle Scholar
  56. 56.
    Yao, C., et al. Bipolar microsecond pulses and insulated needle electrodes for reducing muscle contractions during irreversible electroporation. IEEE Trans. Biomed. Eng. 2017. doi: 10.1109/TBME.2017.2690624.Google Scholar
  57. 57.
    Deodhar, A., et al. Irreversible electroporation near the heart: ventricular arrhythmias can be prevented with ECG synchronization. Am. J. Roentgenol. 196:W330–W335, 2011.CrossRefGoogle Scholar
  58. 58.
    Dunki-Jacobs, E., P. Philips, and I. Martin. Evaluation of thermal injury to liver, pancreas and kidney during irreversible electroporation in an in vivo experimental model. Br. J. Surg. 101:1113–1121, 2014.CrossRefPubMedGoogle Scholar

Copyright information

© Biomedical Engineering Society 2017

Authors and Affiliations

  • Tyler Miklovic
    • 1
  • Eduardo L. Latouche
    • 1
  • Matthew R. DeWitt
    • 1
  • Rafael V. Davalos
    • 1
  • Michael B. Sano
    • 2
    • 3
    Email author
  1. 1.Virginia Tech-Wake Forest School of Biomedical Engineering and SciencesBlacksburgUSA
  2. 2.Department of Radiation OncologyStanford University School of MedicineStanfordUSA
  3. 3.UNC-NCSU Joint Department of Biomedical EngineeringChapel HillUSA

Personalised recommendations