Skip to main content
Log in

Performance Evaluation of a Pre-computed Brain Response Atlas in Dummy Head Impacts

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

A pre-computed brain response atlas (pcBRA) may have the potential to accelerate the investigation of the biomechanical mechanisms of traumatic brain injury on a large-scale. In this study, we further enhance the technique and evaluate its performance using six degree-of-freedom angular velocity profiles from dummy head impacts. Using the pcBRA to simplify profiles into acceleration-only shapes, sufficiently accurate strain estimates were obtained for impacts with a major dominating velocity peak. However, they were largely under-estimated when substantial deceleration occurred that reversed the direction of the angular velocity. For these impacts, estimation accuracy was substantially improved with a biphasic profile simplification (average correlation coefficient and linear regression slope of 0.92 ± 0.03 and 0.95 ± 0.07 for biphasic shapes, respectively, vs. 0.80 ± 0.06 and 0.80 ± 0.08 for acceleration-only shapes). Peak maximum principal strain (ɛ p) and cumulative strain damage measure (CSDM) from the estimated strains consistently correlated stronger than kinematic metrics with respect to the baseline ɛ p and CSDM from the directly simulated responses, regardless of the brain region, and by a large margin (e.g., correlation of 0.93 vs. 0.75 compared to Brain Injury Criterion (BrIC) for ɛ p in the whole-brain, and 0.91 vs. 0.47 compared to BrIC for CSDM in the corpus callosum). These findings further support the pre-computation technique for accurate, real-time strain estimation, which could be important to accelerate model-based brain injury studies in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Allison, M. A., Y. S. Kang, J. H. Bolte, M. R. Maltese, and K. B. Arbogast. Validation of a helmet-based system to measure head impact biomechanics in ice hockey. Med. Sci. Sports Exerc. 46:115–123, 2014.

    Article  PubMed  Google Scholar 

  2. Bazarian, J. J., T. Zhu, B. Blyth, A. Borrino, and J. Zhong. Subject-specific changes in brain white matter on diffusion tensor imaging after sports-related concussion. Magn. Reson. Imaging 30:171–180, 2012.

    Article  PubMed  Google Scholar 

  3. Beckwith, J. G., R. M. Greenwald, and J. J. Chu. Measuring head kinematics in football: correlation between the head impact telemetry system and Hybrid III headform. Ann. Biomed. Eng. 40:237–248, 2012.

    Article  PubMed  Google Scholar 

  4. Bigler, E. D. Systems biology, neuroimaging, neuropsychology, neuroconnectivity and traumatic brain injury. Front. Syst. Neurosci. 10:1–23, 2016.

    Article  Google Scholar 

  5. Broglio, S. P., B. Schnebel, J. J. Sosnoff, S. Shin, X. Fend, X. He, and J. Zimmerman. Biomechanical properties of concussions in high school football. Med. Sci. Sports Exerc. 42:2064–2071, 2010.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Broglio, S. P., J. J. Sosnoff, S. Shin, X. He, C. Alcaraz, and J. Zimmerman. Head impacts during high school football: a biomechanical assessment. J. Athl. Train. 44:342–349, 2009.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Cai, Y., W. Zhao, Z. Li, and S. Ji. Concussion classification via deep learning using whole-brain white matter fiber strains, 2017

  8. Camarillo, D. B., P. B. Shull, J. Mattson, R. Shultz, and D. Garza. An instrumented mouthguard for measuring linear and angular head impact kinematics in American football. Ann. Biomed. Eng. 41:1939–1949, 2013.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Carson, J. D., D. W. Lawrence, S. A. Kraft, A. Garel, C. L. Snow, A. Chatterjee, P. Libfeld, H. M. MacKenzie, J. S. Thornton, R. Moineddin, and P. Frémont. Premature return to play and return to learn after a sport-related concussion: physician’s chart review. Can. Fam. Physician 60:310–315, 2014.

    Google Scholar 

  10. CDC. Report to congress on traumatic brain injury in the United States: epidemiology and rehabilitation. Atlanta: National Center for Injury Prevention and Control, 2015. doi:10.1161/HYPERTENSIONAHA.111.186106.

    Google Scholar 

  11. Chrisman, S., M. Schiff, S. Chung, S. Herring, and F. Rivara. Implementation of concussion legislation and extent of concussion education for athletes, parents, and coaches in washington state. Am. J. Sports Med. 42:1190–1196, 2014.

    Article  PubMed  Google Scholar 

  12. Davenport, E. M., C. T. Whitlow, J. E. Urban, M. A. Espeland, Y. Jung, D. A. Rosenbaum, G. A. Gioia, A. K. Powers, J. D. Stitzel, and J. A. Maldjian. Abnormal white matter integrity related to head impact exposure in a season of high school varsity football. J. Neurotrauma 31:1617–1624, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Franklyn, M., B. Fildes, L. Zhang, K. Yang, and L. Sparke. Analysis of finite element models for head injury investigation: reconstruction of four real-world impacts. Stapp Car Crash J. 49:1–32, 2005.

    PubMed  Google Scholar 

  14. Gabler, L. F., J. R. Crandall, and M. B. Panzer. Assessment of kinematic brain injury metrics for predicting strain responses in diverse automotive impact conditions. Ann. Biomed. Eng. 44:3705–3718, 2016. doi:10.1007/s10439-016-1697-0.

    Article  PubMed  Google Scholar 

  15. Garimella, H. T., R. H. R. H. Kraft, H. T. Carimella, and R. H. R. H. Kraft. Modeling the mechanics of axonal fiber tracts using the embedded finite element method. Int. J. Numer. Method. Biomed. Eng. 2823:26–35, 2016.

    Google Scholar 

  16. Giordano, C., and S. Kleiven. Evaluation of axonal strain as a predictor for mild traumatic brain injuries using finite element modeling. Stapp Car Crash J. 58:29–61, 2014.

    PubMed  Google Scholar 

  17. Goriely, A., M. G. D. Geers, G. A. Holzapfel, J. Jayamohan, A. Jérusalem, S. Sivaloganathan, W. Squier, J. A. W. Van Dommelen, S. Waters, and E. Kuhl. Mechanics of the brain: perspectives, challenges, and opportunities. Biomech. Model. Mechanobiol. 14:931–965, 2015. doi:10.1007/s10237-015-0662-4.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Hernandez, F., L. C. Wu, M. C. Yip, A. R. Hoffman, J. Lopez, G. Grant, S. Kleiven, and D. B. Camarillo. Six degree of freedom measurements of human mild traumatic brain injury. Ann. Biomed. Eng. 43:1918–1934, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Hernandez, F., L. C. Wu, M. C. Yip, K. Laksari, A. R. Hoffman, J. R. Lopez, G. A. Grant, S. Kleiven, and D. B. Camarillo. Erratum to: six degree-of-freedom measurements of human mild traumatic brain injury (Annals of Biomedical Engineering Vol. (43:8),1918–1934), 2016, DOI: 10.1007/s10439-014-1212-4. Ann. Biomed. Eng. 44:828–829, 2015.

    Article  Google Scholar 

  20. Iraji, A., R. R. Benson, R. D. Welch, B. J. O. Neil, J. L. Woodard, I. Ayaz, A. Kulek, P. Medado, H. Soltanian-Zadeh, T. Liu, M. Haacke, and Z. Kou. Resting state functional connectivity in mild traumatic brain injury at the acute stage: independent component and seed based analyses. J. Neurotrauma 32:1031–1045, 2014.

    Article  Google Scholar 

  21. Ji, S., and S. Margulies. Brainstem motion within the skull: measurement of the pons displacement in vivo. J. Biomech 40:92–99, 2007.

    Article  PubMed  Google Scholar 

  22. Ji, S., and W. Zhao. A pre-computed brain response atlas for instantaneous strain estimation in contact sports. Ann. Biomed. Eng. 43:1877–1895, 2015.

    Article  PubMed  Google Scholar 

  23. Ji, S., W. Zhao, J. C. Ford, J. G. Beckwith, R. P. Bolander, R. M. Greenwald, L. A. Flashman, K. D. Paulsen, and T. W. McAllister. Group-wise evaluation and comparison of white matter fiber strain and maximum principal strain in sports-related concussion. J. Neurotrauma 32:441–454, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Ji, S., W. Zhao, Z. Li, and T. W. McAllister. Head impact accelerations for brain strain-related responses in contact sports: a model-based investigation. Biomech. Model. Mechanobiol. 13:1121–1136, 2014.

    Article  PubMed  Google Scholar 

  25. Kang, Y.-S., K. Moorhouse, and J. H. Bolte. Measurement of six degrees of freedom head kinematics in impact conditions employing six accelerometers and three angular rate sensors (6a? configuration). J. Biomech. Eng. 133:111007, 2011.

    Article  PubMed  Google Scholar 

  26. Kimpara, H., and M. Iwamoto. Mild traumatic brain injury predictors based on angular accelerations during impacts. Ann. Biomed. Eng. 40:114–126, 2012.

    Article  PubMed  Google Scholar 

  27. King, A. I., K. H. Yang, L. Zhang, W. Hardy, and D. C. Viano. Is head injury caused by linear or angular acceleration? IRCOBI Conference, 2003.

  28. Kleiven, S. Evaluation of head injury criteria using a finite element model validated against experiments on localized brain motion, intracerebral acceleration, and intracranial pressure. Int. J. Crashworthiness 11:65–79, 2006.

    Article  Google Scholar 

  29. Kleiven, S. Predictors for traumatic brain injuries evaluated through accident reconstructions. Stapp Car Crash J. 51:81–114, 2007.

    PubMed  Google Scholar 

  30. Kroshus, E., L. Kubzansky, R. Goldman, and S. Austin. Norms, athletic identity, and concussion symptom under-reporting among male collegiate ice hockey players: a prospective cohort study. Ann. Behav. Med. 49:95–103, 2014.

    Article  Google Scholar 

  31. Kuo, C., L. C. Wu, B. T. Hammoor, J. F. Luck, H. C. Cutcliffe, R. C. Lynall, J. R. Kait, K. R. Campbell, J. P. Mihalik, C. R. Bass, and D. B. Camarillo. Effect of the mandible on mouthguard measurements of head kinematics. J. Biomech. 49:1845–1853, 2016.

    Article  PubMed  Google Scholar 

  32. Marjoux, D., D. Baumgartner, C. Deck, and R. Willinger. Head injury prediction capability of the HIC, HIP, SIMon and ULP criteria. Accid. Anal. Prev. 40:1135–1148, 2008.

    Article  PubMed  Google Scholar 

  33. McAllister, T. W., J. C. Ford, S. Ji, J. G. Beckwith, L. A. Flashman, K. Paulsen, and R. M. Greenwald. Maximum principal strain and strain rate associated with concussion diagnosis correlates with changes in corpus callosum white matter indices. Ann. Biomed. Eng. 40:127–140, 2012.

    Article  PubMed  Google Scholar 

  34. McCrea, M., T. Hammeke, G. Olsen, P. Leo, and K. Guskiewicz. Unreported concussion in high school football players: implications for prevention. Clin J Sport Med 14:13–17, 2004.

    Article  PubMed  Google Scholar 

  35. Montenigro, P. H., M. L. Alosco, B. Martin, D. H. Daneshvar, J. Mez, C. Chaisson, C. J. Nowinski, R. Au, A. C. McKee, R. C. Cantu, M. D. McClean, R. A. Stern, and Y. Tripodis. Cumulative head impact exposure predicts later-life depression, apathy, executive dysfunction, and cognitive impairment in former high school and college football players. J. Neurotrauma 34:328–340, 2017.

    Article  PubMed  Google Scholar 

  36. NRC, and IOM. Sports-related concussions in youth: improving the science, changing the culture. Washington, DC: National Academies Press, 2014.

    Google Scholar 

  37. Pellman, E. J., D. C. Viano, A. M. Tucker, I. R. Casson, and J. F. Waeckerle. Concussion in professional football: reconstruction of game impacts and injuries. Neurosurgery 53:799–814, 2003.

    Article  PubMed  Google Scholar 

  38. Rapp, P. E., D. O. Keyser, A. Albano, R. Hernandez, D. B. Gibson, R. A. Zambon, W. D. Hairston, J. D. Hughes, A. Krystal, and A. S. Nichols. Traumatic brain injury detection using electrophysiological methods. Front. Hum. Neurosci. 9:11, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Sullivan, S., S. A. Eucker, D. Gabrieli, C. Bradfield, B. Coats, M. R. Maltese, J. Lee, C. Smith, and S. S. Margulies. White matter tract-oriented deformation predicts traumatic axonal brain injury and reveals rotational direction-specific vulnerabilities. Biomech. Model. Mechanobiol. 14:877–896, 2014. doi:10.1007/s10237-014-0643-z.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Takhounts, E. G., M. J. Craig, K. Moorhouse, J. McFadden, and V. Hasija. Development of brain injury criteria (Br IC). Stapp Car Crash J. 57:243–266, 2013.

    PubMed  Google Scholar 

  41. Ward, C., M. Chan, and A. Nahum. Intracranial pressure-A brain injury criterion, 1980. doi:10.4271/801304

  42. Yanaoka, T., Y. Dokko, and Y. Takahashi. Investigation on an injury criterion related to traumatic brain injury primarily induced by head rotation, 2015. doi:10.4271/2015-01-1439.

  43. Zhang, J., N. Yoganandan, F. A. Pintar, and T. A. Gennarelli. Role of translational and rotational accelerations on brain strain in lateral head impact. Biomed. Sci. Instrum. 42:501–506, 2006.

    PubMed  Google Scholar 

  44. Zhao, W., Y. Cai, Z. Li, and S. Ji. Injury prediction and vulnerability assessment using strain and susceptibility measures of the deep white matter. Biomech. Model. Mechanobiol. 2017. doi:10.1007/s10237-017-0915-5.

    Google Scholar 

  45. Zhao, W., J. C. Ford, L. A. Flashman, T. W. McAllister, and S. Ji. White matter injury susceptibility via fiber strain evaluation using whole-brain tractography. J. Neurotrauma 33:1834–1847, 2016.

    Article  PubMed  Google Scholar 

  46. Zhao, W., and S. Ji. Parametric investigation of regional brain strain responses via a pre-computed atlas. IRCOBI Conference, 2015.

  47. Zhao, W., and S. Ji. Feasibility of a pressure response superposition scheme in blunt head impact. IRCOBI Conferences, 2015.

  48. Zhao, W., and S. Ji. Brain strain uncertainty due to shape variation in and simplification of head angular velocity profiles. Biomech. Model. Mechanobiol. 16:449–461, 2017.

    Article  PubMed  Google Scholar 

  49. Zonfrillo, M., K. Kim, and K. B. Arbogast. Emergency department visits and head computed tomography utilization for concussion patients from, 2006 to 2011. Acad. Emerg. Med. 22:872–877, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Funding is provided by the NIH Grants R01 NS092853 and R21 NS088781.

Disclosure

No competing financial interests exist.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Songbai Ji.

Additional information

Associate Editor Joel D. Stitzel oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, W., Kuo, C., Wu, L. et al. Performance Evaluation of a Pre-computed Brain Response Atlas in Dummy Head Impacts. Ann Biomed Eng 45, 2437–2450 (2017). https://doi.org/10.1007/s10439-017-1888-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-017-1888-3

Keywords

Navigation