Skip to main content
Log in

Modelling of Lesions Associated with Functional Mitral Regurgitation in an Ex Vivo Platform

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Functional mitral regurgitation (FMR) is a complex pathology involving valvular and subvalvular structures reconfiguration, and its treatment is considered challenging. There is a lack of experimental models allowing for reliable preclinical FMR treatments’ evaluation in a realistic setting. A novel approach to simulate FMR was developed and incorporated into an ex vivo passive beating heart platform. FMR was obtained by dilating the mitral annulus (MA) mainly in the antero-posterior direction and displacing the papillary muscles (PMs) apically and laterally by ad hoc designed and 3D printed dilation and displacing devices. It caused hemodynamic and valve morphology alterations. Isolated MA dilation (MAD) led to significantly increased antero-posterior distance (A-P) and decreased coaptation height (CH), tenting area (TA) and systolic leaflets angulation, resembling clinically recognized type I of mitral regurgitation with normal leaflet motion. Whereas concomitant MAD with PM displacement caused an increase in A-P, TA, CH. This geometrical configuration replicated typical determinants of type IIIb lesion with restricted leaflet motion. The proposed methods provided a realistic and repeatable ex vivo FMR model featuring two lesions clinically associated with the pathology. It bears a promise to be successfully utilized in preclinical studies, clinical training and medical education.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Abbreviations

MV:

Mitral valve

FMR:

Functional mitral regurgitation

MA:

Mitral annulus

PM:

Papillary muscle

CMV:

Competent mitral valve

MAD:

Mitral annulus dilation

PMD:

Papillary muscle displacement

CO :

Cardiac output

AoP :

Mean aortic pressure

LAP :

Left atrial pressure

LAP tot :

Mean whole-cycle left atrial pressure

LAP syst :

Mean systolic left atrial pressure

LAP diast :

Mean diastolic left atrial pressure

ABF :

Aortic backflow fraction

Δp :

Differential systolic pressure across mitral valve

A-P :

Antero-posterior distance

CH :

Coaptation height

TA :

Tenting area

PLA :

Posterior leaflet angle

ALA :

Anterior leaflet angle

References

  1. Alkhouli, M., S. Wolfe, F. Alqahtani, S. Aljohani, J. Mills, S. Gnegy, and V. Badhwar. The feasibility of transcatheter edge-to-edge repair in the management of acute severe ischemic mitral regurgitation. JACC Cardiovasc. Interv. 2017. doi:10.1016/j.jcin.2016.11.056.

    Google Scholar 

  2. Bhattacharya, S., T. Pham, Z. He, and W. Sun. Tension to passively cinch the mitral annulus through coronary sinus access: an ex vivo study in ovine model. J. Biomech. 47:1382–1388, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Carpentier, A., D. H. Adams, and F. Filsoufi. Carpentier’s Reconstructive Valve Surgery: From Valve Analysis to Valve Reconstruction. Maryland Heights, MO: Saunders/Elsevier, 2010.

    Google Scholar 

  4. Dal-Bianco, J. P., J. Beaudoin, M. D. Handschumacher, and R. A. Levine. Basic mechanisms of mitral regurgitation. Can. J. Cardiol. 30:971–981, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Enriquez-Sarano, M., et al. Mitral regurgitation. Lancet (Lond. Engl.) 373:1382–1394, 2009.

    Article  Google Scholar 

  6. Feldman, T., and A. Young. Percutaneous approaches to valve repair for mitral regurgitation. J. Am. Coll. Cardiol. 63:2057–2068, 2014.

    Article  PubMed  Google Scholar 

  7. Fukamachi, K., M. Inoue, K. Doi, S. Schenk, H. Nemeh, C. Faber, J. L. Navia, and P. M. McCarthy. Reduction of mitral regurgitation using the Coapsys device: a novel ex vivo method using excised recipients hearts. ASAIO J. 51:82–84, 2005.

    Article  PubMed  Google Scholar 

  8. Gaemperli, O., P. Biaggi, R. Gugelmann, M. Osranek, J. J. Schreuder, I. Bühler, D. Sürder, T. F. Lüscher, C. Felix, D. Bettex, J. Grünenfelder, and R. Corti. Real-time left ventricular pressure–volume loops during percutaneous mitral valve repair with the Mitraclip system. Circulation 127:1018–1027, 2013.

    Article  PubMed  Google Scholar 

  9. Gertz, Z. M., A. Raina, L. Saghy, E. S. Zado, D. J. Callans, F. E. Marchlinski, M. G. Keane, and F. E. Silvestry. Evidence of atrial functional mitral regurgitation due to atrial fibrillation. J. Am. Coll. Cardiol. 58:1474–1481, 2011.

    Article  PubMed  Google Scholar 

  10. He, S., A. A. Fontaine, E. Schwammenthal, A. P. Yoganathan, and R. A. Levine. Integrated mechanism for functional mitral regurgitation. Circulation 96:1826–1834, 1997.

    Article  CAS  PubMed  Google Scholar 

  11. Jaworek, M., M. Piola, F. Lucherini, G. Gelpi, M. Castagna, G. Lentini, C. Antona, G. B. Fiore, and R. Vismara. Functional tricuspid regurgitation model in a beating heart platform. ASAIO J. 63:438–444, 2017. doi:10.1097/MAT.0000000000000510.

    Article  PubMed  Google Scholar 

  12. Khabbaz, K. R., F. Mahmood, O. Shakil, H. J. Warraich, J. H. Gorman, R. C. Gorman, R. Matyal, P. Panzica, and P. E. Hess. Dynamic 3-dimensional echocardiographic assessment of mitral annular geometry in patients with functional mitral regurgitation. Ann. Thorac. Surg. 95:105–110, 2013.

    Article  PubMed  Google Scholar 

  13. Kwan, J. Geometric differences of the mitral apparatus between ischemic and dilated cardiomyopathy with significant mitral regurgitation: real-time three-dimensional echocardiography study. Circulation 107:1135–1140, 2003.

    Article  PubMed  Google Scholar 

  14. Leopaldi, A. M., R. Vismara, M. Lemma, L. Valerio, M. Cervo, A. Mangini, M. Contino, A. Redaelli, C. Antona, and G. B. Fiore. In vitro hemodynamics and valve imaging in passive beating hearts. J. Biomech. 45:1133–1139, 2012.

    Article  CAS  PubMed  Google Scholar 

  15. Levine, R. A., et al. Mitral valve disease—morphology and mechanisms. Nat. Rev. Cardiol. 12:689–710, 2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Messas, E., A. Bel, C. Szymanski, I. Cohen, B. Touchot, M. D. Handschumacher, M. Desnos, A. Carpentier, P. Menasché, A. A. Hagège, and R. A. Levine. Relief of mitral leaflet tethering following chronic myocardial infarction by chordal cutting diminishes left ventricular remodeling. Circ. Cardiovasc. Imaging 3:679–686, 2010.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Nappi, F., M. Lusini, C. Spadaccio, A. Nenna, E. Covino, C. Acar, and M. Chello. Papillary muscle approximation versus restrictive annuloplasty alone for severe ischemic mitral regurgitation. J. Am. Coll. Cardiol. 67:2334–2346, 2016.

    Article  PubMed  Google Scholar 

  18. Nkomo, V. T., J. M. Gardin, T. N. Skelton, J. S. Gottdiener, C. G. Scott, and M. Enriquez-Sarano. Burden of valvular heart diseases: a population-based study. Lancet 368:1005–1011, 2006.

    Article  PubMed  Google Scholar 

  19. Richards, A. L., R. C. Cook, G. Bolotin, and G. D. Buckner. A dynamic heart system to facilitate the development of mitral valve repair techniques. Ann. Biomed. Eng. 37:651–660, 2009.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Siefert, A. W., and R. L. Siskey. Bench models for assessing the mechanics of mitral valve repair and percutaneous surgery. Cardiovasc. Eng. Technol. 6:193–207, 2015.

    Article  PubMed  Google Scholar 

  21. Sturla, F., R. Vismara, M. Jaworek, E. Votta, P. Romitelli, O. A. Pappalardo, F. Lucherini, C. Antona, G. B. Fiore, and A. Redaelli. In vitro and in silico approaches to quantify the effects of the Mitraclip® system on mitral valve function. J. Biomech. 50:83–92, 2017.

    Article  PubMed  Google Scholar 

  22. Taramasso, M., M. Y. Emmert, D. Reser, A. Guidotti, N. Cesarovic, M. Campagnol, A. Addis, F. Nietlispach, S. P. Hoerstrup, and F. Maisano. Pre-clinical in vitro and in vivo models for heart valve therapies. J. Cardiovasc. Transl. Res. 8:319–327, 2015.

    Article  PubMed  Google Scholar 

  23. Tibayan, F. A., F. Rodriguez, M. K. Zasio, L. Bailey, D. Liang, G. T. Daughters, F. Langer, N. B. Ingels, and D. C. Miller. Geometric distortions of the mitral valvular–ventricular complex in chronic ischemic mitral regurgitation. Circulation 108:116–121, 2003.

    Article  Google Scholar 

  24. Timek, T. A., and D. C. Miller. Another multidisciplinary look at ischemic mitral regurgitation. Semin. Thorac. Cardiovasc. Surg. 23:220–231, 2011.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Timek, T. A., P. Dagum, D. T. Lai, D. Liang, G. T. Daughters, N. B. Ingels, and D. C. Miller. Pathogenesis of mitral regurgitation in tachycardia-induced cardiomyopathy. Circulation 104:I-47–I-53, 2001.

    Article  CAS  Google Scholar 

  26. Vismara, R., A. Pavesi, E. Votta, M. Taramasso, F. Maisano, and G. B. Fiore. A pulsatile simulator for the in vitro analysis of the mitral valve with tri-axial papillary muscle displacement. Int. J. Artif. Organs 34:383–391, 2011.

    Article  PubMed  Google Scholar 

  27. Vismara, R., G. Gelpi, S. Prabhu, P. Romitelli, L. G. Troxler, A. Mangini, C. Romagnoni, M. Contino, D. T. Van Hoven, F. Lucherini, M. Jaworek, A. Redaelli, G. B. Fiore, and C. Antona. Transcatheter edge-to-edge treatment of functional tricuspid regurgitation in an ex vivo pulsatile heart model. J. Am. Coll. Cardiol. 68:1024–1033, 2016.

    Article  PubMed  Google Scholar 

  28. Vismara, R., A. M. Leopaldi, M. Piola, C. Asselta, M. Lemma, C. Antona, A. Redaelli, F. van de Vosse, M. Rutten, and G. B. Fiore. In vitro assessment of mitral valve function in cyclically pressurized porcine hearts. Med. Eng. Phys. 38:346–353, 2016.

    Article  PubMed  Google Scholar 

  29. Yamauchi, H., E. N. Feins, N. V. Vasilyev, S. Shimada, D. Zurakowski, and P. J. Del Nido. Creation of nonischemic functional mitral regurgitation by annular dilatation and nonplanar modification in a chronic in vivo swine model. Circulation 2013. doi:10.1161/CIRCULATIONAHA.112.000396.

    Google Scholar 

  30. Yamauchi, H., E. N. Feins, N. V. Vasilyev, S. Shimada, D. Zurakowski, and P. J. Del Nido. Creation of nonischemic functional mitral regurgitation by annular dilatation and nonplanar modification in a chronic in vivo swine model. Circulation 128:S263–S270, 2013.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Valeria Quattrocchi (Philips SpA Healthcare, Monza, Italy) for the technical support in obtaining the echocardiographic images.

Disclosures

None.

Funding

This work was supported in part by the European Commission within the Horizon 2020 Framework through the MSCA-ITN-ETN European Training Networks (Project Number 642458) and by Fondazione per la Ricerca in Cardiochirurgia ONLUS, Milano, Italy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michal Jaworek.

Additional information

Associate Editor Scott I. Simon oversaw the review of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Video (AVI 15070 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jaworek, M., Lucherini, F., Romagnoni, C. et al. Modelling of Lesions Associated with Functional Mitral Regurgitation in an Ex Vivo Platform. Ann Biomed Eng 45, 2324–2334 (2017). https://doi.org/10.1007/s10439-017-1885-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-017-1885-6

Keywords

Navigation