Skip to main content

Cell Mechanosensors and the Possibilities of Using Magnetic Nanoparticles to Study Them and to Modify Cell Fate

Abstract

The use of magnetic nanoparticles (MNPs) is a promising technique for future advances in biomedical applications. This idea is supported by the availability of MNPs that can target specific cell components, the variety of shapes of MNPs and the possibility of finely controlling the applied magnetic forces. To examine this opportunity, here we review the current developments in the use of MNPs to mechanically stimulate cells and, specifically, the cell mechanotransduction systems. We analyze the cell components that may act as mechanosensors and their effect on cell fate and we focus on the promising possibilities of controlling stem-cell differentiation, inducing cancer-cell death and treating nervous-system diseases.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2

References

  1. 1.

    Ahamed, M., M. S. AlSalhi, and M. K. J. Siddiqui. Silver nanoparticle applications and human health. Clin. Chim. Acta 411:1841–1848, 2010.

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Amano, M., M. Nakayama, and K. Kaibuchi. Rho-kinase/ROCK: a key regulator of the cytoskeleton and cell polarity. Cytoskeleton 67:545–554, 2010.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Arulmoli, J., M. M. Pathak, L. P. McDonnell, J. L. Nourse, F. Tombola, J. C. Earthman, and L. A. Flanagan. Static stretch affects neural stem cell differentiation in an extracellular matrix-dependent manner. Sci. Rep. 5:8499, 2015.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Asin, L., M. R. Ibarra, A. Tres, and G. F. Goya. Controlled cell death by magnetic hyperthermia: effects of exposure time, field amplitude, and nanoparticle concentration. Pharm. Res. 29:1319–1327, 2012.

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Bernal, A., L. M. Perez, B. De Lucas, N. S. Martin, A. Kadow-Romacker, G. Plaza, K. Raum, and B. G. Galvez. Low-intensity pulsed ultrasound improves the functional properties of cardiac mesoangioblasts. Stem Cell Rev. 11:852–865, 2015.

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Blumenthal, N. R., O. Hermanson, B. Heimrich, and V. P. Shastri. Stochastic nanoroughness modulates neuron-astrocyte interactions and function via mechanosensing cation channels. Proc. Natl. Acad. Sci. USA 111:16124–16129, 2014.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Bray, D. Axonal growth in response to experimentally applied nechanical tension. Dev. Biol. 102:379–389, 1984.

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Chakraborty, M., S. Jain, and V. Rani. Nanotechnology: emerging tool for diagnostics and therapeutics. Appl. Biochem. Biotechnol. 165:1178–1187, 2011.

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Chatelin, S., A. Constantinesco, and R. Willinger. Fifty years of brain tissue mechanical testing: from in vitro to in vivo investigations. Biorheology 47:255–276, 2010.

    PubMed  Google Scholar 

  10. 10.

    Cheng, D., X. Li, G. Zhang, and H. Shi. Morphological effect of oscillating magnetic nanoparticles in killing tumor cells. Nanoscale Res. Lett. 9:195, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Cho, M. H., E. J. Lee, M. Son, J. Lee, D. Yoo, J. Kim, S. W. Park, J. Shin, and J. Cheon. A magnetic switch for the control of cell death signalling in in vitro and in vivo systems. Nat. Mater. 11:1038–1043, 2012.

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Choi, W. I., J. Kim, S. U. Heo, Y. Y. Jeong, Y. H. Kim, and G. Tae. The effect of mechanical properties of iron oxide nanoparticle-loaded functional nano-carrier on tumor targeting and imaging. J. Controlled Release 162:267–275, 2012.

    CAS  Article  Google Scholar 

  13. 13.

    Coste, B., J. Mathur, M. Schmidt, T. J. Earley, S. Ranade, M. J. Petrus, A. E. Dubin, and A. Patapoutian. Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels. Science 330:55–60, 2010.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. 14.

    del Rio, A., R. Perez-Jimenez, R. Liu, P. Roca-Cusachs, J. M. Fernandez, and M. P. Sheetz. Stretching single talin rod molecules activates vinculin binding. Science 323:638–641, 2009.

    Article  PubMed  Google Scholar 

  15. 15.

    Di Carlo, D. A mechanical biomarker of cell state in medicine. J. Lab. Autom. 17:32–42, 2012.

    Article  PubMed  Google Scholar 

  16. 16.

    Di Corato, R., A. Espinosa, L. Lartigue, M. Tharaud, S. Chat, T. Pellegrino, C. Menager, F. Gazeau, and C. Wilhelm. Magnetic hyperthermia efficiency in the cellular environment for different nanoparticle designs. Biomaterials 35:6400–6411, 2014.

    Article  PubMed  Google Scholar 

  17. 17.

    Discher, D. E., P. Janmey, and Y. L. Wang. Tissue cells feel and respond to the stiffness of their substrate. Science 310:1139–1143, 2005.

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Engler, A. J., S. Sen, H. L. Sweeney, and D. E. Discher. Matrix elasticity directs stem cell lineage specification. Cell 126:677–689, 2006.

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Evangelisti, E., D. Wright, M. Zampagni, R. Cascella, C. Fiorillo, S. Bagnoli, A. Relini, D. Nichino, T. Scartabelli, and B. Nacmias. Lipid rafts mediate amyloid-induced calcium dyshomeostasis and oxidative stress in Alzheimer’s disease. Curr. Alzheimer Res. 10:143–153, 2013.

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    Fettiplace, R., and C. M. Hackney. The sensory and motor roles of auditory hair cells. Nat. Rev. Neurosci. 7:19–29, 2006.

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Grashoff, C., B. D. Hoffman, M. D. Brenner, R. Zhou, M. Parsons, M. T. Yang, M. A. McLean, S. G. Sligar, C. S. Chen, T. Ha, and M. A. Schwartz. Measuring mechanical tension across vinculin reveals regulation of focal adhesion dynamics. Nature 466:263–266, 2010.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Hayakawa, K., H. Tatsumi, and M. Sokabe. Actin filaments function as a tension sensor by tension-dependent binding of cofilin to the filament. J. Cell Biol. 195:721–727, 2011.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Hemphill, M. A., S. Dauth, C. J. Yu, B. E. Dabiri, and K. K. Parker. Traumatic brain injury and the neuronal microenvironment: a potential role for neuropathological mechanotransduction. Neuron 85:1177–1192, 2015.

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Henstock, J. R., M. Rotherham, H. Rashidi, K. M. Shakesheff, and A. J. El Haj. Remotely activated mechanotransduction via magnetic nanoparticles promotes mineralization synergistically with bone morphogenetic protein 2: applications for injectable cell therapy. Stem Cells Transl. Med. 3:1363–1374, 2014.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Huiskes, R., R. Ruimerman, G. H. van Lenthe, and J. D. Janssen. Effects of mechanical forces on maintenance and adaptation of form in trabecular bone. Nature 405:704–706, 2000.

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    Ingber, D. E. Cellular basis of mechanotransduction. Biol. Bull. 194:323–325, 1998.

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Ito, Y., T. Kimura, K. Nam, A. Katoh, T. Masuzawa, and A. Kishida. Effects of vibration on differentiation of cultured PC12 Cells. Biotechnol. Bioeng. 108:592–599, 2011.

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    Iwasaki, H., S. Eguchi, H. Ueno, F. Marumo, and Y. Hirata. Mechanical stretch stimulates growth of vascular smooth muscle cells via epidermal growth factor receptor. Am. J. Physiol. Heart Circ. Physiol. 278:H521–H529, 2000.

    CAS  PubMed  Google Scholar 

  29. 29.

    Jun, Y., J. Lee, and J. Cheon. Chemical design of nanoparticle probes for high-performance magnetic resonance imaging. Angew. Chem. Int. Ed. 47:5122–5135, 2008.

    CAS  Article  Google Scholar 

  30. 30.

    Jutila, A. A., D. L. Zignego, B. K. Hwang, J. K. Hilmer, T. Hamerly, C. A. Minor, S. T. Walk, and R. K. June. Candidate mediators of chondrocyte mechanotransduction via targeted and untargeted metabolomic measurements. Arch. Biochem. Biophys. 545:116–123, 2014.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Kalil, K., and E. Dent. Touch and go: guidance cues signal to the growth cone cytoskelleton. Curr. Opin. Neurobiol. 15:521–526, 2005.

    CAS  Article  PubMed  Google Scholar 

  32. 32.

    Kanczler, J. M., H. S. Sura, J. Magnay, D. Green, R. O. C. Oreffo, J. P. Dobson, and A. J. El Haj. Controlled differentiation of human bone marrow stromal cells using magnetic nanoparticle technology. Tissue Eng. Part A 16:3241–3250, 2010.

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    Kelley, S. K., and A. Ashkenazi. Targeting death receptors in cancer with Apo2/TRAIL. Curr. Opin. Pharmacol. 4:333–339, 2004.

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Keung, A. J., E. M. de Juan-Pardo, D. V. Schaffer, and S. Kumar. Rho GTPases mediate the mechanosensitive lineage commitment of neural stem cells. Stem Cells 29:1886–1897, 2011.

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    Kholodenko, B. N. Cell-signalling dynamics in time and space. Nat. Rev. Mol. Cell Biol. 7:165–176, 2006.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Kilinc, D., A. Blasiak, J. J. O’Mahony, and G. U. Lee. Low piconewton towing of CNS axons against diffusing and surface-bound repellents requires the inhibition of motor protein-associated pathways. Sci. Rep. 4:7128, 2014.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Kim, D., E. A. Rozhkova, I. V. Ulasov, S. D. Bader, T. Rajh, M. S. Lesniak, and V. Novosad. Biofunctionalized magnetic-vortex microdiscs for targeted cancer-cell destruction. Nat. Mater. 9:165–171, 2010.

    CAS  Article  PubMed  Google Scholar 

  38. 38.

    Kolhatkar, A. G., A. C. Jamison, D. Litvinov, R. C. Willson, and T. R. Lee. Tuning the magnetic properties of nanoparticles. Int. J. Mol. Sci. 14:15977–16009, 2013.

    Article  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Labeit, S., B. Kolmerer, and W. Linke. The giant protein titin: emerging roles in physiology and pathophysiology. Circ. Res. 80:290–294, 1997.

    CAS  Article  PubMed  Google Scholar 

  40. 40.

    Lange, S., F. Xiang, A. Yakovenko, A. Vihola, P. Hackman, E. Rostkova, J. Kristensen, B. Brandmeier, G. Franzen, B. Hedberg, L. Gunnarsson, S. Hughes, S. Marchand, T. Sejersen, I. Richard, L. Edstrom, E. Ehler, B. Udd, and M. Gautel. The kinase domain of titin controls muscle gene expression and protein turnover. Science 308:1599–1603, 2005.

    CAS  Article  PubMed  Google Scholar 

  41. 41.

    Lo, C. M., H. B. Wang, M. Dembo, and Y. L. Wang. Cell movement is guided by the rigidity of the substrate. Biophys. J . 79:144–152, 2000.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Lu, D., C. Chen, C. Lai, S. Soni, T. Lam, C. Le, E. Y. Chen, T. Nguyen, and W. Chin. Microgrooved surface modulates neuron differentiation in human embryonic stem cells. Hum. Embryonic Stem Cell Protoc., 2016. doi:10.1007/7651_2014_81

    Google Scholar 

  43. 43.

    Markin, V. S., and B. Martinac. Mechanosensitive ion channels as reporters of bilayer expansion: a theoretical-model. Biophys. J . 60:1120–1127, 1991.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Matsumoto, Y., R. Chen, P. Anikeeva, and A. Jasanoff. Engineering intracellular biomineralization and biosensing by a magnetic protein. Nat. Commun. 6:8721, 2015.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Mitra, S. K., and D. D. Schlaepfer. Integrin-regulated FAK-Src signaling in normal and cancer cells. Curr. Opin. Cell Biol. 18:516–523, 2006.

    CAS  Article  PubMed  Google Scholar 

  46. 46.

    Nikukar, H., S. Reid, P. M. Tsimbouri, M. O. Riehle, A. S. G. Curtis, and M. J. Dalby. Osteogenesis of mesenchymal stem cells by nanoscale mechanotransduction. ACS Nano 7:2758–2767, 2013.

    CAS  Article  PubMed  Google Scholar 

  47. 47.

    Nunnally, M. H., J. M. Dangelo, and S. W. Craig. Filamin concentration in cleavage furrow and midbody region: frequency of occurrence compared with that of alpha-actinin and myosin. J. Cell Biol. 87:219–226, 1980.

    CAS  Article  PubMed  Google Scholar 

  48. 48.

    Paluch, E. K., C. M. Nelson, N. Biais, B. Fabry, J. Moeller, B. L. Pruitt, C. Wollnik, G. Kudryasheva, F. Rehfeldt, and W. Federle. Mechanotransduction: use the force(s). BMC Biol. 13:47, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Paszek, M. J., N. Zahir, K. R. Johnson, J. N. Lakins, G. I. Rozenberg, A. Gefen, C. A. Reinhart-King, S. S. Margulies, M. Dembo, D. Boettiger, D. A. Hammer, and V. M. Weaver. Tensional homeostasis and the malignant phenotype. Cancer Cell 8:241–254, 2005.

    CAS  Article  PubMed  Google Scholar 

  50. 50.

    Pathak, M. M., J. L. Nourse, T. Tran, J. Hwe, J. Arulmoli, T. L. Dai Trang, E. Bernardis, L. A. Flanagan, and F. Tombola. Stretch-activated ion channel Piezo1 directs lineage choice in human neural stem cells. Proc. Natl. Acad. Sci. USA 111:16148–16153, 2014.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Pelham, R., and Y. Wang. Cell locomotion and focal adhesions are regulated by substrate flexibility. Proc. Natl. Acad. Sci. USA 94:13661–13665, 1997.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  52. 52.

    Philip, J. T., and K. N. Dahl. Nuclear mechanotransduction: response of the lamina to extracellular stress with implications in aging. J. Biomech. 41:3164–3170, 2008.

    Article  PubMed  Google Scholar 

  53. 53.

    Plaza, G. R., and T. Q. P. Uyeda. Contraction speed of the actomyosin cytoskeleton in the absence of the cell membrane. Soft Matter 9:4390–4400, 2013.

    CAS  Article  Google Scholar 

  54. 54.

    Plaza, G. R., T. Q. P. Uyeda, Z. Mirzaei, and C. A. Simmons. Study of the influence of actin-binding proteins using linear analyses of cell deformability. Soft Matter 11:5435–5446, 2015.

    CAS  Article  PubMed  Google Scholar 

  55. 55.

    Pounder, N. M., and A. J. Harrison. Low intensity pulsed ultrasound for fracture healing: a review of the clinical evidence and the associated biological mechanism of action. Ultrasonics 48:330–338, 2008.

    CAS  Article  PubMed  Google Scholar 

  56. 56.

    Puchner, E. M., A. Alexandrovich, A. L. Kho, U. Hensen, L. V. Schaefer, B. Brandmeier, F. Graeter, H. Grubmueller, H. E. Gaub, and M. Gautel. Mechanoenzymatics of titin kinase. Proc. Natl. Acad. Sci. USA 105:13385–13390, 2008.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  57. 57.

    Qiao, R., Q. Jia, S. Huewel, R. Xia, T. Liu, F. Gao, H. Galla, and M. Gao. Receptor-mediated delivery of magnetic nanoparticles across the blood-brain barrier. ACS Nano 6:3304–3310, 2012.

    CAS  Article  PubMed  Google Scholar 

  58. 58.

    Ren, Y., J. C. Effler, M. Norstrom, T. Luo, R. A. Firtel, P. A. Iglesias, R. S. Rock, and D. N. Robinson. Mechanosensing through cooperative interactions between myosin II and the actin crosslinker cortexillin I. Curr. Biol. 19:1421–1428, 2009.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  59. 59.

    Ren, X. D., W. B. Kiosses, D. J. Sieg, C. A. Otey, D. D. Schlaepfer, and M. A. Schwartz. Focal adhesion kinase suppresses Rho activity to promote focal adhesion turnover. J. Cell Sci. 113(Pt 20):3673–3678, 2000.

    CAS  PubMed  Google Scholar 

  60. 60.

    Sachs, F. Stretch-activated ion channels: what are they? Physiology 25:50–56, 2010.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  61. 61.

    Sadhukha, T., T. S. Wiedmann, and J. Panyam. Inhalable magnetic nanoparticles for targeted hyperthermia in lung cancer therapy. Biomaterials 34:5163–5171, 2013.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  62. 62.

    Samuel, M. S., J. I. Lopez, E. J. McGhee, D. R. Croft, D. Strachan, P. Timpson, J. Munro, E. Schroeder, J. Zhou, V. G. Brunton, N. Barker, H. Clevers, O. J. Sansom, K. I. Anderson, V. M. Weaver, and M. F. Olson. Actomyosin-mediated cellular tension drives increased tissue stiffness and beta-catenin activation to induce epidermal hyperplasia and tumor growth. Cancer Cell 19:776–791, 2011.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  63. 63.

    Sawada, Y., M. Tamada, B. J. Dubin-Thaler, O. Cherniavskaya, R. Sakai, S. Tanaka, and M. P. Sheetz. Force sensing by mechanical extension of the Src family kinase substrate p130Cas. Cell 127:1015–1026, 2006.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  64. 64.

    Schrenk-Siemens, K., H. Wende, V. Prato, K. Song, C. Rostock, A. Loewer, J. Utikal, G. R. Lewin, S. G. Lechner, and J. Siemens. PIEZO2 is required for mechanotransduction in human stem cell-derived touch receptors. Nat. Neurosci. 18:10–16, 2015.

    CAS  Article  PubMed  Google Scholar 

  65. 65.

    Seong, J., N. Wang, and Y. Wang. Mechanotransduction at focal adhesions: from physiology to cancer development. J. Cell Mol. Med. 17:597–604, 2013.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  66. 66.

    Seppala, J., H. Tossavainen, N. Rodic, P. Permi, U. Pentikainen, and J. Ylanne. Flexible structure of peptide-bound filamin a mechanosensor domain pair 20-21. PLoS ONE 10:e0136969, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  67. 67.

    Shao, M., F. Ning, J. Zhao, M. Wei, D. G. Evans, and X. Duan. Preparation of Fe3O4@SiO2@layered double hydroxide core-shell microspheres for magnetic separation of proteins. J. Am. Chem. Soc. 134:1071–1077, 2012.

    CAS  Article  PubMed  Google Scholar 

  68. 68.

    Shen, J., F. W. Luscinskas, A. Connolly, C. F. Dewey, and M. A. Gimbrone. Fluid shear-stress modulates cytosolic free calcium in vascular endothelial-cells. Am. J. Physiol. 262:C384–C390, 1992.

    CAS  PubMed  Google Scholar 

  69. 69.

    Shen, Y., C. Wu, T. Q. Uyeda, G. R. Plaza, B. Liu, Y. Han, M. S. Lesniak, and Y. Cheng. Elongated nanoparticle aggregates in cancer cells for mechanical destruction with low frequency rotating magnetic field. Theranostics 7:1735–1748, 2017.

    Article  PubMed  PubMed Central  Google Scholar 

  70. 70.

    Simi, A. K., A. S. Piotrowski, and C. M. Nelson. Mechanotransduction, metastasis and genomic instability: genomic instability and cancer metastasis. In: Mechanisms, emerging themes, and novel therapeutic strategies 20, edited by C. Maxwell, and C. Roskelley. Switzerland: Springer, 2015, pp. 139–158.

    Google Scholar 

  71. 71.

    Smith, M. L., D. Gourdon, W. C. Little, K. E. Kubow, R. A. Eguiluz, S. Luna-Morris, and V. Vogel. Force-induced unfolding of fibronectin in the extracellular matrix of living cells. PLoS Biol. 5:e268, 2007.

    Article  PubMed  PubMed Central  Google Scholar 

  72. 72.

    Son, B., H. D. Kim, M. Kim, J. A. Kim, J. Lee, H. Shin, N. S. Hwang, and T. H. Park. Physical stimuli-induced chondrogenic differentiation of mesenchymal stem cells using magnetic nanoparticles. Adv. Healthc. Mater. 4:1339–1347, 2015.

    CAS  Article  PubMed  Google Scholar 

  73. 73.

    Souza, G. R., J. R. Molina, R. M. Raphael, M. G. Ozawa, D. J. Stark, C. S. Levin, L. F. Bronk, J. S. Ananta, J. Mandelin, M. Georgescu, J. A. Bankson, J. G. Gelovani, T. C. Killian, W. Arap, and R. Pasqualini. Three-dimensional tissue culture based on magnetic cell levitation. Nat. Nanotechnol. 5:291–296, 2010.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  74. 74.

    Sun, Y., K. M. A. Yong, L. G. Villa-Diaz, X. Zhang, W. Chen, R. Philson, S. Weng, H. Xu, P. H. Krebsbach, and J. Fu. Hippo/YAP-mediated rigidity-dependent motor neuron differentiation of human pluripotent stem cells. Nat. Mater. 13:599–604, 2014.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  75. 75.

    Suresh, S. Biomechanics and biophysics of cancer cells. Acta Biomater. 3:413–438, 2007.

    Article  PubMed  PubMed Central  Google Scholar 

  76. 76.

    Swaminathan, V., K. Mythreye, E. T. O’Brien, A. Berchuck, G. C. Blobe, and R. Superfine. Mechanical stiffness grades metastatic potential in patient tumor cells and in cancer cell lines. Cancer Res. 71:5075–5080, 2011.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  77. 77.

    Swift, J., I. L. Ivanovska, A. Buxboim, T. Harada, P. C. D. P. Dingal, J. Pinter, J. D. Pajerowski, K. R. Spinler, J. Shin, M. Tewari, F. Rehfeldt, D. W. Speicher, and D. E. Discher. Nuclear lamin-A scales with tissue stiffness and enhances matrix-directed differentiation. Science 341:1240104, 2013.

    Article  PubMed  PubMed Central  Google Scholar 

  78. 78.

    Thomas, C. H., J. H. Collier, C. S. Sfeir, and K. E. Healy. Engineering gene expression and protein synthesis by modulation of nuclear shape. Proc. Natl. Acad. Sci. USA 99:1972–1977, 2002.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  79. 79.

    Tsimbouri, P. M. Adult stem cell responses to nanostimuli. J. Funct. Biomater. 6:598–622, 2015.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  80. 80.

    Uddin, S. M. Z., and Y. Qin. Enhancement of osteogenic differentiation and proliferation in human mesenchymal stem cells by a modified low intensity ultrasound stimulation under simulated microgravity. PLoS ONE 8:e73914, 2013.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  81. 81.

    Uyeda, T. Q. P., Y. Iwadate, N. Umeki, A. Nagasaki, and S. Yumura. Stretching actin filaments within cells enhances their affinity for the myosin II motor domain. PLoS ONE 6:e26200, 2011.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  82. 82.

    Vicente-Manzanares, M., X. Ma, R. S. Adelstein, and A. R. Horwitz. Non-muscle myosin II takes centre stage in cell adhesion and migration. Nat. Rev. Mol. Cell Biol. 10:778–790, 2009.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  83. 83.

    Vogel, V. Mechanotransduction involving multimodular proteins: converting force into biochemical signals. Annu. Rev. Biophys. Biomol. Struct. 35:459–488, 2006.

    CAS  Article  PubMed  Google Scholar 

  84. 84.

    Weaver, V., O. Petersen, F. Wang, C. Larabell, P. Briand, C. Damsky, and M. Bissell. Reversion of the malignant phenotype of human breast cells in three-dimensional culture and in vivo by integrin blocking antibodies. J. Cell Biol. 137:231–245, 1997.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  85. 85.

    Weinbaum, S., Y. Duan, M. M. Thi, and L. You. An integrative review of mechanotransduction in endothelial, epithelial (renal) and dendritic cells (osteocytes). Cell. Mol. Bioeng. 4:510–537, 2011.

    Article  PubMed  PubMed Central  Google Scholar 

  86. 86.

    Wu, M., J. Fannin, K. M. Rice, B. Wang, and E. R. Blough. Effect of aging on cellular mechanotransduction. Ageing Res. Rev. 10:1–15, 2011.

    Article  PubMed  Google Scholar 

  87. 87.

    Yonemura, S., Y. Wada, T. Watanabe, A. Nagafuchi, and M. Shibata. alpha-Catenin as a tension transducer that induces adherens junction development. Nat. Cell Biol. 12:533–542, 2010.

    CAS  Article  PubMed  Google Scholar 

  88. 88.

    Yoshikawa, H. Y., T. Kawano, T. Matsuda, S. Kidoaki, and M. Tanaka. Morphology and adhesion strength of myoblast cells on photocurable gelatin under native and non-native micromechanical environments. J. Phys. Chem. B 117:4081–4088, 2013.

    CAS  Article  PubMed  Google Scholar 

  89. 89.

    Zangwill, A. Modern electrodynamics. Cambridge: Cambridge Unicersity Press, 2013.

    Google Scholar 

  90. 90.

    Zemel, A., F. Rehfeldt, A. E. X. Brown, D. E. Discher, and S. A. Safran. Optimal matrix rigidity for stress-fibre polarization in stem cells. Nat. Phys. 6:468–473, 2010.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  91. 91.

    Zhang, E., M. F. Kircher, M. Koch, L. Eliasson, S. N. Goldberg, and E. Renstrom. Dynamic magnetic fields remote-control apoptosis via nanoparticle rotation. ACS Nano 8:3192–3201, 2014.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

YC thanks the National Science Foundation of China (No. 81571803) the Thousand Talents Plan and Shanghai Pujiang Program (No. 15PJ1407800) for support. GRP and TQPU received a team grant from The Program of High-end Foreign Experts of the State Administration of Foreign Experts Affairs, China. GRP received support from the Ministerio de Economía y Competitividad, Spain, througth the project MAT2016-76847-R.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Yu Cheng or Gustavo R. Plaza.

Additional information

Associate Editor James J Moon oversaw the review of this article.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shen, Y., Cheng, Y., Uyeda, T.Q.P. et al. Cell Mechanosensors and the Possibilities of Using Magnetic Nanoparticles to Study Them and to Modify Cell Fate. Ann Biomed Eng 45, 2475–2486 (2017). https://doi.org/10.1007/s10439-017-1884-7

Download citation

Keywords

  • Mechanotransduction
  • Signaling cascade
  • Cytoskeleton
  • Magnetic nanoparticles
  • Rotating magnetic field
  • Functionalization
  • Organelle targeting
  • Localized stimulation
  • Cell differentiation