Skip to main content
Log in

Development of an Electromechanical Grade to Assess Human Knee Articular Cartilage Quality

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

An Erratum to this article was published on 18 July 2017

This article has been updated

Abstract

Quantitative assessments of articular cartilage function are needed to aid clinical decision making. Our objectives were to develop a new electromechanical grade to assess quantitatively cartilage quality and test its reliability. Electromechanical properties were measured using a hand-held electromechanical probe on 200 human articular surfaces from cadaveric donors and osteoarthritic patients. These data were used to create a reference electromechanical property database and to compare with visual arthroscopic International Cartilage Repair Society (ICRS) grading of cartilage degradation. The effect of patient-specific and location-specific characteristics on electromechanical properties was investigated to construct a continuous and quantitative electromechanical grade analogous to ICRS grade. The reliability of this novel grade was assessed by comparing it with ICRS grades on 37 human articular surfaces. Electromechanical properties were not affected by patient-specific characteristics for each ICRS grade, but were significantly different across the articular surface. Electromechanical properties varied linearly with ICRS grade, leading to a simple linear transformation from one scale to the other. The electromechanical grade correlated strongly with ICRS grade (r = 0.92, p < 0.0001). Additionally, the electromechanical grade detected lesions that were not found visually. This novel grade can assist the surgeon in assessing human knee cartilage by providing a quantitative and reliable grading system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Change history

  • 18 July 2017

    An erratum to this article has been published.

References

  1. Abedian, R., E. Willbold, C. Becher, and C. Hurschler. In vitro electro-mechanical characterization of human knee articular cartilage of different degeneration levels: a comparison with ICRS and Mankin scores. J. Biomech. 46:1328–1334, 2013.

    Article  PubMed  Google Scholar 

  2. Athanasiou, K. A., M. P. Rosenwasser, J. A. Buckwalter, T. I. Malinin, and V. C. Mow. Interspecies comparisons of in situ intrinsic mechanical properties of distal femoral cartilage. J. Orthop. Res. 9:330–340, 1991.

    Article  CAS  PubMed  Google Scholar 

  3. Bae, W. C., M. M. Payanal, A. C. Chen, N. D. Hsieh-Bonassera, B. L. Ballard, M. K. Lotz, R. D. Coutts, W. D. Bugbee, and R. L. Sah. Topographic patterns of cartilage lesions in knee osteoarthritis. Cartilage 1:10–19, 2010.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Becher C., M. Ricklefs, E. Willbold, C. Hurschler, and R. Abedian. Electromechanical assessment of human knee articular cartilage with compression-induced streaming potentials. Cartilage 7:62–69, 2016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bert, J. M., and J. Leverone. Histologic appearance of “pristine” articular cartilage in knees with unicompartmental osteoarthritis. J. Knee Surg. 20:15–19, 2007.

    Article  PubMed  Google Scholar 

  6. Brinkhof S., R. Nizak, S. Sim, V. Khlebnikov, D. W. J. Klomp, and D. B. F. Saris. Correlation of 7T gagCEST MRI with electromechanical properties of femoral articular cartilage abstract. In: Proceedings of the Annual Meeting International Society for Magnetic Resonance in Medecine 808, 2017.

  7. Buschmann, M. D., and A. J. Grodzinsky. A molecular model of proteoglycan-associated electrostatic forces in cartilage mechanics. J. Biomech. Eng. 117:179–192, 1995.

    Article  CAS  PubMed  Google Scholar 

  8. Changoor, A., J. P. Coutu, M. Garon, E. Quenneville, M. B. Hurtig, and M. D. Buschmann. Streaming potential-based arthroscopic device is sensitive to cartilage changes immediately post-impact in an equine cartilage injury model. J. Biomech. Eng. 133:061005, 2011.

    Article  CAS  PubMed  Google Scholar 

  9. Changoor, A., L. Fereydoonzad, A. Yaroshinsky, and M. D. Buschmann. Effects of refrigeration and freezing on the electromechanical and biomechanical properties of articular cartilage. J. Biomech. Eng. 132:064502, 2010.

    Article  PubMed  Google Scholar 

  10. Froimson, M. I., A. Ratcliffe, T. R. Gardner, and V. C. Mow. Differences in patellofemoral joint cartilage material properties and their significance to the etiology of cartilage surface fibrillation. Osteoarthr. Cartil. 5:377–386, 1997.

    Article  CAS  PubMed  Google Scholar 

  11. Garon, M., A. Legare, R. Guardo, P. Savard, and M. D. Buschmann. Streaming potentials maps are spatially resolved indicators of amplitude, frequency and ionic strength dependant responses of articular cartilage to load. J. Biomech. 35:207–216, 2002.

    Article  CAS  PubMed  Google Scholar 

  12. Heidari, B. Knee osteoarthritis prevalence, risk factors, pathogenesis and features: part I. Casp. J. Intern. Med. 2:205–212, 2011.

    Google Scholar 

  13. Kleemann, R. U., D. Krocker, A. Cedraro, J. Tuischer, and G. N. Duda. Altered cartilage mechanics and histology in knee osteoarthritis: relation to clinical assessment (ICRS Grade). Osteoarthr. Cartil. 13:958–963, 2005.

    Article  CAS  PubMed  Google Scholar 

  14. Knecht, S., B. Vanwanseele, and E. Stussi. A review on the mechanical quality of articular cartilage—Implications for the diagnosis of osteoarthritis. Clin. Biomech. (Bristol, Avon) 21:999–1012, 2006.

    Article  Google Scholar 

  15. Legare, A., M. Garon, R. Guardo, P. Savard, A. R. Poole, and M. D. Buschmann. Detection and analysis of cartilage degeneration by spatially resolved streaming potentials. J. Orthop. Res. 20:819–826, 2002.

    Article  CAS  PubMed  Google Scholar 

  16. Mainil-Varlet, P., T. Aigner, M. Brittberg, P. Bullough, A. Hollander, E. Hunziker, R. Kandel, S. Nehrer, K. Pritzker, S. Roberts, E. Stauffer, and S. International Cartilage Repair. Histological assessment of cartilage repair: a report by the Histology Endpoint Committee of the International Cartilage Repair Society (ICRS). J. B. Jt. Surg. Am. 85-A(Suppl 2):45–57, 2003.

    Article  Google Scholar 

  17. Martin, J. A., and J. A. Buckwalter. Roles of articular cartilage aging and chondrocyte senescence in the pathogenesis of osteoarthritis. Iowa Orthop. J. 21:1–7, 2001.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Moshtagh, P. R., B. Pouran, N. M. Korthagen, A. A. Zadpoor, and H. Weinans. Guidelines for an optimized indentation protocol for measurement of cartilage stiffness: the effects of spatial variation and indentation parameters. J. Biomech. 49:3602–3607, 2016.

    Article  PubMed  Google Scholar 

  19. Nishitani, K., M. Kobayashi, H. Kuroki, K. Mori, T. Shirai, T. Satake, S. Nakamura, R. Arai, Y. Nakagawa, T. Nakamura, and S. Matsuda. Ultrasound can detect macroscopically undetectable changes in osteoarthritis reflecting the superficial histological and biochemical degeneration: ex vivo study of rabbit and human cartilage. PLoS ONE 9:e89484, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Oakley, S. P., and M. N. Lassere. A critical appraisal of quantitative arthroscopy as an outcome measure in osteoarthritis of the knee. Semin. Arthritis Rheum. 33:83–105, 2003.

    Article  PubMed  Google Scholar 

  21. Peters, A. E., E. J. Comerford, S. Macaulay, K. T. Bates, and R. Akhtar. Micromechanical properties of canine femoral articular cartilage following multiple freeze-thaw cycles. J. Mech. Behav. Biomed. Mater. 71:114–121, 2017.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Quenneville E., M. Garon, A. Legare, M. Shive, and M. D. Buschmann. Mapping articular cartilage function using a streaming potential-based arthroscopic device. Transactions of the 2007 Segal North American Osteoarthritis Workshop 2007.

  23. Schagemann, J. C., N. Rudert, M. E. Taylor, S. Sim, E. Quenneville, M. Garon, M. Klinger, M. D. Buschmann, and H. Mittelstaedt. Bilayer implants: electromechanical assessment of regenerated articular cartilage in a sheep model. Cartilage 7:346–360, 2016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sim, S., A. Chevrier, M. Garon, E. Quenneville, P. Lavigne, A. Yaroshinsky, C. D. Hoemann, and M. D. Buschmann. Electromechanical probe and automated indentation maps are sensitive techniques in assessing early degenerated human articular cartilage. J. Orthop. Res. 35:858–867, 2016.

    Article  PubMed  Google Scholar 

  25. Sim, S., A. Chevrier, M. Garon, E. Quenneville, A. Yaroshinsky, C. D. Hoemann, and M. D. Buschmann. Non-destructive electromechanical assessment (Arthro-BST) of human articular cartilage correlates with histological scores and biomechanical properties. Osteoarthr. Cartil. 22:1926–1935, 2014.

    Article  CAS  PubMed  Google Scholar 

  26. Spahn, G., H. M. Klinger, M. Baums, U. Pinkepank, and G. O. Hofmann. Reliability in arthroscopic grading of cartilage lesions: results of a prospective blinded study for evaluation of inter-observer reliability. Arch. Orthop. Trauma Surg. 131:377–381, 2011.

    Article  PubMed  Google Scholar 

  27. Tetteh, E. S., S. Bajaj, and N. S. Ghodadra. Basic science and surgical treatment options for articular cartilage injuries of the knee. J. Orthop. Sports Phys. Ther. 42:243–253, 2012.

    Article  PubMed  Google Scholar 

  28. Thambyah, A., A. Nather, and J. Goh. Mechanical properties of articular cartilage covered by the meniscus. Osteoarthr. Cartil. 14:580–588, 2006.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge the technical contributions of Jean-Francois Lavoie, Dalia Zaky, Aurore Li Tong, Mathieu Masse and Laura-Alexie Chevrolat. Funding was provided by the National Sciences and Engineering Research Council (NSERC), IRAP program from National Research Council Canada, MÉDITIS Program, the Canadian Arthritis Society and Biomomentum Inc.

Conflict of interest

Two of the co-authors, E. Quenneville and M. Garon, are the owners of the company Biomomentum Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael D. Buschmann.

Additional information

Associate Editor Eric M. Darling oversaw the review of this article.

The original version of this article was revised: Table 1 was corrected.

An erratum to this article is available at https://doi.org/10.1007/s10439-017-1887-4.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sim, S., Hadjab, I., Garon, M. et al. Development of an Electromechanical Grade to Assess Human Knee Articular Cartilage Quality. Ann Biomed Eng 45, 2410–2421 (2017). https://doi.org/10.1007/s10439-017-1879-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-017-1879-4

Keywords

Navigation