Carbon Nanotube Reinforced Collagen/Hydroxyapatite Scaffolds Improve Bone Tissue Formation In Vitro and In Vivo

Abstract

Current bone regeneration strategies faced major challenges in fabricating the bionic scaffolds with nano-structure, constituents and mechanical features of native bone. In this study, we developed a new porous scaffold by adding the multi-walled carbon nanotube (MWCNT) into collagen (Col)/hydroxyapatite (HA) composites. Data showed that 0.5%CNT/Col/HA (0.5%CNT) group was approximately tenfolds stiffer than Col–HA, and it was superior in promoting bone marrow mesenchymal stem proliferation and spreading, mRNA and protein expressions of bone sialoprotein (BSP) and osteocalcin (OCN) than Col–HA group. Moreover, we utilized 0.5%CNT composite to repair the rat calvarial defects (8 mm diameter) in vivo, and observed the new bone formation by 3D reconstruction of micro CT, HE and Masson staining, and BSP, OCN by immunohistochemical analysis. Results showed that newly formed bone in 0.5%CNT group was significantly higher than that in Col–HA group at 12 weeks. These findings highlighted a promising strategy in healing of large area bone defect with MWCNT added into the Col–HA scaffold as they possessed the combined effects of mechanical strength and osteogenicity.

This is a preview of subscription content, log in to check access.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

References

  1. 1.

    Bettinger, C. J., R. Langer, and J. T. Borenstein. Engineering substrate topography at the micro- and nanoscale to control cell function. Angew. Chem. Int. Ed. Engl. 48:5406–5415, 2009.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Chen, X., U. C. Tam, and J. L. Czlapinski. Interfacing carbon nanotubes with living cells. J. Am. Chem. Soc. 128:6292–6293, 2006.

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Cheng, Q., K. Rutledge, and E. Jabbarzadeh. Carbon nanotube-poly(lactide-co-glycolide) composite scaffolds for bone tissue engineering applications. Ann. Biomed. Eng. 41:904–916, 2013.

    Article  PubMed  Google Scholar 

  4. 4.

    Christenson, R. H. Biochemical markers of bone metabolism: an overview. Clin. Biochem. 30:573–593, 1997.

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Cicciù, M., A. S. Herford, G. Juodžbalys, and E. Stoffella. Recombinant human bone morphogenetic protein type 2 application for a possible treatment of bisphosphonates-related osteonecrosis of the jaw. J. Craniofac. Surg. 23:784–788, 2012.

    Article  PubMed  Google Scholar 

  6. 6.

    Cranford, S. W., J. Boer, C. van Blitterswijk, and M. J. Buehler. Materiomics: an -omics approach to biomaterials research. Adv. Mater., 25:802−824, 2013.

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Ganss, B., R. H. Kim, and J. Sodek. Bone sialoprotein. Crit. Rev. Oral Biol. Med. 10:79–98, 1999.

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Harrison, B. S., and A. Atala. Carbon nanotube applications for tissue engineering. Biomaterials 28:344–353, 2007.

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Herford, A. S., and M. Cicciù. Recombinant human bone morphogenetic protein type 2 jaw reconstruction in patients affected by giant cell tumor. J. Craniofac. Surg. 21:1970–1975, 2010.

    Article  PubMed  Google Scholar 

  10. 10.

    Herford, A. S., M. Cicciù, and L. F. Eftimie. rhBMP-2 applied as support of distraction osteogenesis: A split-mouth histological study over nonhuman primates mandibles. Int. J. Clin. Exp. Med. 9:17187–17194, 2016.

    Google Scholar 

  11. 11.

    Herford, A. S., R. Tandon, T. W. Stevens, E. Stoffella, and M. Cicciu. Immediate distraction osteogenesis: the sandwich technique in combination with rhBMP-2 for anterior maxillary and mandibular defects. J. Craniofac. Surg. 24:1383–1387, 2013.

    Article  PubMed  Google Scholar 

  12. 12.

    Laino, L., I. Giovanna, P. Adriano, L. M. Lorenzo, and M. Cicciù. Vertical ridge augmentation of the atrophic posterior mandible with sandwich technique: bone block from the chin area versus corticocancellous bone block allograft–clinical and histological prospective randomized controlled study. Biomed. Res. Int. 2014:982104, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Liao, S. S., F. Z. Cui, W. Zhang, and Q. L. Feng. Hierarchically biomimetic bone scaffold materials: nano-HA/collagen/PLA composite. J. Biomed. Mater. Res. B Appl. Biomater. 69:158–165, 2004.

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Marco, C., A. S. Herford, D. Cicciù, R. Tandon, and C. Maiorana. Recombinant human bone morphogenetic protein-2 promote and stabilize hard and soft tissue healing for large mandibular new bone reconstruction defects. J. Craniofac. Surg. 25:860–862, 2014.

    Article  Google Scholar 

  15. 15.

    Namgung, S., K. Y. Baik, J. Park, and S. Hong. Controlling the growth and differentiation of human mesenchymal stem cells by the arrangement of individual carbon nanotubes. ACS Nano. 5:7383–7390, 2011.

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Narita, N., Y. Kobayashi, and H. Nakamura. Multiwalled carbon nanotubes specifically inhibit osteoclast differentiation and function. Nano Lett. 9:1406–1413, 2009.

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Nel, A. E., L. Mädler, D. Velegol, T. Xia, E. M. Hoek, P. Somasundaran, F. Klaessig, V. Castranova, and M. Thompson. Understanding biophysicochemical interactions at the nano-bio interface. Nat. Mater. 8:543–557, 2009.

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Newman, P., A. Minett, R. Ellis-Behnke, and H. Zreiqat. Carbon nanotubes: their potential and pitfalls for bone tissue regeneration and engineering. Nanomedicine. 9:1139–1158, 2013.

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Niu, L., H. Kua, and D. H. Chua. Bonelike apatite formation utilizing carbon nanotubes as template. Langmuir 26:4069–4073, 2010.

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    Oh, S., K. S. Brammer, Y. S. J. Li, D. Teng, A. J. Engler, and S. Chien. Stem cell fate dictated solely by altered nanotube dimension. Proc. Natl. Acad. Sci. USA 106:2130–2135, 2009.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Petrauskaite, O., P. Gomes, and M. H. Fernandes. Biomimetic mineralization on a microporous cellulose-based matrix for bone regeneration. Biomed. Res. Int. 2013:452750, 2013.

    Article  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Shen, X., L. Chen, X. Cai, T. Tong, H. Tong, and J. Hu. A novel method for the fabrication of homogeneous hydroxyapatite/collagen nanocomposite and nanocomposite scaffold with hierarchical porosity. J. Mater. Sci. Mater. Med. 22:299–305, 2011.

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Shimizu, M., Y. Kobayashi, and T. Mizoguchi. Carbon nanotubes induce bone calcification by bidirectional interaction with osteoblasts. Adv. Mater. 24:2176–2185, 2012.

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Wang, S. F., L. Shen, W. D. Zhang, and Y. J. Tong. Preparation and mechanical properties of chitosan/carbon nanotubes composites. Biomacromol 6:3067–3072, 2005.

    CAS  Article  Google Scholar 

  25. 25.

    Wick, P., P. Manser, and L. K. Limbach. The degree and kind of agglomeration affect carbon nanotube cytotoxicity. Toxicol. Lett. 168:121–131, 2007.

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    Xiao, Y., T. Gong, and S. Zhou. The functionalization of multi-walled carbon nanotubes by in situ deposition of hydroxyapatite. Biomaterials 31:5182–5190, 2010.

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Zanello, L. P., B. Zhao, H. Hu, and R. C. Haddon. Bone cell proliferation on carbon nanotubes. Nano Lett. 6:562–567, 2006.

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    Zhao, B., H. Hu, S. K. Mandal, and R. C. Haddon. A bone mimic based on the self-assembly of hydroxyapatite on chemically functionalized single-walled carbon nanotubes. Chem. Mater. 17:3235–3241, 2005.

    CAS  Article  Google Scholar 

Download references

Acknowledgment

This work was supported by grants from National Nature Science Foundation of China (Nos. 31271052, 31470904, 31670992), Sichuan Provincial Science and Technology Department Fund (No. 2013SZ0057), and Medical Scientific Research Projects of Chongqing Health Department (No. 2013-2-070), Program for Innovation Team Building at Institutions of Higher Education in Chongqing in 2016 (CXTDG201602006), and Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Lixing Zhao.

Additional information

Associate Editor Debra T. Auguste oversaw the review of this article.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jing, Z., Wu, Y., Su, W. et al. Carbon Nanotube Reinforced Collagen/Hydroxyapatite Scaffolds Improve Bone Tissue Formation In Vitro and In Vivo . Ann Biomed Eng 45, 2075–2087 (2017). https://doi.org/10.1007/s10439-017-1866-9

Download citation

Keywords

  • Multi-walled carbon nanotube
  • Osteogenesis
  • Calvarial defect
  • Bone regeneration
  • Nanotechnology