An MRI-Guided Telesurgery System Using a Fabry-Perot Interferometry Force Sensor and a Pneumatic Haptic Device

Abstract

This paper presents a surgical master-slave teleoperation system for percutaneous interventional procedures under continuous magnetic resonance imaging (MRI) guidance. The slave robot consists of a piezoelectrically actuated 6-degree-of-freedom (DOF) robot for needle placement with an integrated fiber optic force sensor (1-DOF axial force measurement) using the Fabry-Perot interferometry (FPI) sensing principle; it is configured to operate inside the bore of the MRI scanner during imaging. By leveraging the advantages of pneumatic and piezoelectric actuation in force and position control respectively, we have designed a pneumatically actuated master robot (haptic device) with strain gauge based force sensing that is configured to operate the slave from within the scanner room during imaging. The slave robot follows the insertion motion of the haptic device while the haptic device displays the needle insertion force as measured by the FPI sensor. Image interference evaluation demonstrates that the telesurgery system presents a signal to noise ratio reduction of less than 17% and less than 1% geometric distortion during simultaneous robot motion and imaging. Teleoperated needle insertion and rotation experiments were performed to reach 10 targets in a soft tissue-mimicking phantom with 0.70 ± 0.35 mm Cartesian space error.

This is a preview of subscription content, log in to check access.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16

References

  1. 1.

    Cepek, J., U. Lindner, S. Ghai, A. S. Louis, S. R. Davidson, M. Gertner, E. Hlasny, M. S. Sussman, A. Fenster, and J. Trachtenberg. Mechatronic system for in-bore MRI-guided insertion of needles to the prostate: an in vivo needle guidance accuracy study. J. Magn. Reson. Imaging 42(1):48–55, 2015.

    Article  PubMed  Google Scholar 

  2. 2.

    Chinzei, K. and K. Miller. Towards MRI guided surgical manipulator. Med. Sci. Monit. 7(1):153–163, 2001.

    CAS  PubMed  Google Scholar 

  3. 3.

    Comber, D. B., E. J. Barth, and R. J. Webster. Design and control of an magnetic resonance compatible precision pneumatic active cannula robot. J. Med. Dev. 8(1):011003, 2014.

    Article  Google Scholar 

  4. 4.

    Elhawary, H., A. Zivanovic, M. Rea, B. Davies, C. Besant, D. McRobbie, N. de Souza, I. Young, and M. Lamperth. The feasibility of MR-image guided prostate biopsy using piezoceramic motors inside or near to the magnet isocentre. Med Image Comput Comput Assist Interv 9(Pt 1):519–526, 2006.

    PubMed  Google Scholar 

  5. 5.

    Eslami, S., W. Shang, G. Li, N. Patel, G. S. Fischer, J. Tokuda, N. Hata, C. M. Tempany, and I. Iordachita. In-bore prostate transperineal interventions with an MRI-guided parallel manipulator: system development and preliminary evaluation. Int. J. Med. Robot. Comput. Assist. Surg. 12:199–213, 2015.

  6. 6.

    Felfoul, O., A. Becker, C. Bergeles, and P. E. Dupont. Achieving commutation control of an MRI-powered robot actuator. IEEE Trans. Robot. 31(2):387–399, 2015.

    Article  Google Scholar 

  7. 7.

    Gangopadhyay, T. K. Prospects for fiber Bragg gratings and Fabry-Perot interferometers in fibre-optic vibration sensing. Sens. Actuators A 113(1):20–38, 2004.

    CAS  Article  Google Scholar 

  8. 8.

    Ho, M., A. McMillan, J. Simard, R. Gullapalli, and J. Desai. Toward a SMA-actuated MRI-compatible neurosurgical robot. IEEE Trans. Robot. 28(1):213–222, 2012.

    Article  Google Scholar 

  9. 9.

    Kokes, R., K. Lister, R. Gullapalli, B. Zhang, A. MacMillan, H. Richard, and J. P. Desai. Towards a teleoperated needle driver robot with haptic feedback for RFA of breast tumors under continuous MRI. Med. Image Anal. 13(3):445–455, 2009.

    Article  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Krieger, A., S. Song, N. Bongjoon Cho, I. Iordachita, P. Guion, G. Fichtinger, and L. L. Whitcomb. Development and evaluation of an actuated MRI-compatible robotic system for MRI-guided prostate intervention. IEEE/ASME Trans. Mechatron. (99):1–12, 2012.

    Google Scholar 

  11. 11.

    Li, G., H. Su, G. Cole, W. Shang, K. Harrington, A. Camilo, J.G. Pilitsis, and G. S. Fischer. Robotic system for MRI-guided stereotactic neurosurgery. IEEE Trans. Biomed. Eng. 62(4):1077–1088, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Li, M., A. Kapoor, D. Mazilu, and K. Horvath. Pneumatic actuated robotic assistant system for aortic valve replacement under MRI guidance. IEEE Trans. Biomed. Eng. 58(2):443–451, 2011.

    Article  PubMed  Google Scholar 

  13. 13.

    Nathoo, N., M. Çavusoglu, M. Vogelbaum, and G. Barnett. In touch with robotics: neurosurgery for the future. Neurosurgery 56(3):421, 2005.

    Article  PubMed  Google Scholar 

  14. 14.

    NEMA. Determination of image uniformity in diagnostic magnetic resonance images. NEMA standards publication MS 3-2008.

  15. 15.

    NEMA. Determination of signal-to-noise ratio (SNR) in diagnostic magnetic resonance imaging. NEMA standard publication MS 1-2008.

  16. 16.

    Patel, N. A., T. van Katwijk, G. Li, P. Moreira, W. Shang, S. Misra, and G. S. Fischer. Closed-loop asymmetric-tip needle steering under continuous intraoperative MRI guidance. In: 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pages 4869–4874. IEEE, 2015.

  17. 17.

    Shang, W. Teleoperation of MRI-Compatible Robots with Hybrid Actuation and Haptic Feedback. PhD thesis, Worcester Polytechnic institute, 2014.

  18. 18.

    Shang, W., H. Su, G. Li, and G. S. Fischer. Teleoperation system with hybrid pneumatic-piezoelectric actuation for MRI-guided needle insertion with haptic feedback. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4092–4098. IEEE, 2013.

  19. 19.

    Su, H., W. Shang, G. Cole, G. Li, K. Harrington, A. Camilo, J. Tokuda, C. M. Tempany, N. Hata, and G. S. Fischer. Piezoelectrically-actuated robotic system for MRI-guided prostate percutaneous therapy. IEEE/ASME Trans. Mechatron. 99(3):1–13, 2015.

    Google Scholar 

  20. 20.

    Su, H., M. Zervas, G. Cole, C. Furlong, and G. S. Fischer. Real-time MRI-guided needle placement robot with integrated fiber optic force sensing. In: IEEE ICRA International Conference on Robotics and Automation, 2011.

  21. 21.

    Tilak, G., K. Tuncali, S.-E. Song, J. Tokuda, O. Olubiyi, F. Fennessy, A. Fedorov, T. Penzkofer, C. Tempany, and N. Hata. 3T MR-guided in-bore transperineal prostate biopsy: a comparison of robotic and manual needle-guidance templates. J. Magn. Reson. Imaging 42(1):63–71, 2015.

    Article  PubMed  Google Scholar 

  22. 22.

    Tse, Z., H. Elhawary, M. Rea, B. Davies, I. Young, and M. Lamperth. Haptic needle unit for MR-guided biopsy and its control. IEEE/ASME Trans. Mechatron. 17(1):183–187, 2012.

    Article  Google Scholar 

  23. 23.

    Yakar, D., M. G. Schouten, D. G. H. Bosboom, J. O. Barentsz, T. W. J. Scheenen, and J. J. Futterer. Feasibility of a pneumatically actuated MR-compatible robot for transrectal prostate biopsy guidance. Radiology 260(1):241–247, 2011.

    Article  PubMed  Google Scholar 

  24. 24.

    Yang, B., S. Roys, U.-X. Tan, M. Philip, H. Richard, R. P. Gullapalli, and J. P. Desai. Design, development, and evaluation of a master-slave surgical system for breast biopsy under continuous MRI. Int. J. Robot. Res. 33:616–630, 2013.

  25. 25.

    Yang, B., U.-X. Tan, A. B. McMillan, R. Gullapalli, and J. P. Desai. Design and control of a 1-DOF MRI-compatible pneumatically actuated robot with long transmission lines. IEEE/ASME Trans. Mechatron. 16(6):1040–1048, 2011.

    Article  Google Scholar 

  26. 26.

    Yu, Y., T. K. Podder, Y. D. Zhang, W. S. Ng, V. Misic, J. Sherman, D. Fuller, D. J. Rubens, J. G. Strang, R. A. Brasacchio, and E. M. Messing. Robotic system for prostate brachytherapy. Comput. Aided Surg. 12(6):366–370, 2007.

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work is supported in part by the Congressionally Directed Medical Research Programs Prostate Cancer Research Program New Investigator Award W81XWH-09-1-0191, NIH Bioengineering Research Partnership 1R01CA111288-01A1, and Link Foundation Fellowship in Advanced Simulation and Training.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hao Su.

Additional information

Associate Editor Xiaoxiang Zheng oversaw the review of this article.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Su, H., Shang, W., Li, G. et al. An MRI-Guided Telesurgery System Using a Fabry-Perot Interferometry Force Sensor and a Pneumatic Haptic Device. Ann Biomed Eng 45, 1917–1928 (2017). https://doi.org/10.1007/s10439-017-1839-z

Download citation

Keywords

  • MRI-compatible robot
  • MR-conditional
  • Image-guided surgery
  • Percutaneous interventions
  • Haptics
  • Teleoperation