Skip to main content
Log in

A Theoretical Study on Inhibition of Melanoma with Controlled and Targeted Delivery of siRNA via Skin Using SPACE-EGF

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Melanoma is a potentially lethal skin cancer with high mortality rate. Recently, the peptide-mediated transdermal delivery of small interference RNA (siRNA) emerges as a promising strategy to treat melanoma by inducing the apoptosis of tumor cells, but the related theoretical model describing the delivery of siRNA under the effect of SPACE-EGF, the growth inhibition of melanoma and the dynamic expanding of the bump on the skin due to the growth of melanoma has not been reported yet. In this article, a theoretical model is developed to describe the percutaneous siRNA delivery mediated by SPACE-EGF to melanoma and the growth inhibition of melanoma. The results present the spatial–temporal distribution of siRNA and the growth of melanoma under the inhibition of siRNA, which shows a good consistency with the experimental results. In addition, this model represents the uplift process of tumors on the skin surface. The model presented here is a useful tool to understand the whole process of the SPACE-EGF-mediated delivery of the siRNA to melanoma through skin, to predict the therapeutic effect, and to optimize the therapeutic strategy, providing valuable references for the treatment of melanoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Adam, J. A. A simplified mathematical-model of tumor-growth. Math. Biosci. 81:229–244, 1986.

    Article  Google Scholar 

  2. Ahn, J.-H., and M. Lee. The siRNA-mediated downregulation of N-Ras sensitizes human melanoma cells to apoptosis induced by selective BRAF inhibitors. Mol. Cell. Biochem. 392:239–247, 2014.

    Article  CAS  PubMed  Google Scholar 

  3. Bartlett, D. W., and M. E. Davis. Insights into the kinetics of siRNA-mediated gene silencing from live-cell and live-animal bioluminescent imaging. Nucleic Acids Res. 34:322–333, 2006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bartlett, D. W., H. Su, I. J. Hildebrandt, W. A. Weber, and M. E. Davis. Impact of tumor-specific targeting on the biodistribution and efficacy of siRNA nanoparticles measured by multimodality in vivo imaging. Proc. Natl. Acad. Sci. USA 104:15549–15554, 2007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bentele, M., I. Lavrik, M. Ulrich, S. Stosser, D. W. Heermann, H. Kalthoff, P. H. Krammer, and R. Eils. Mathematical modeling reveals threshold mechanism in CD95-induced apoptosis. J. Cell Biol. 166:839–851, 2004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bernardo, F. P., and P. M. Saraiva. A theoretical model for transdermal drug delivery from emulsions and its dependence upon formulation. J. Pharm. Sci. 97:3781–3809, 2008.

    Article  CAS  PubMed  Google Scholar 

  7. Busini, V., P. Arosio, and M. Masi. Mechanistic modelling of avascular tumor growth and pharmacokinetics influence: part I. Chem. Eng. Sci. 62:1877–1886, 2007.

    Article  CAS  Google Scholar 

  8. Byrne, H. M., and M. A. J. Chaplain. Growth of necrotic tumors in the presence and absence of inhibitors. Math. Biosci. 135:187–216, 1996.

    Article  CAS  PubMed  Google Scholar 

  9. Byrne, H., and L. Preziosi. Modelling solid tumour growth using the theory of mixtures. Math. Med. Biol. 20:341–366, 2003.

    Article  PubMed  Google Scholar 

  10. Chandrasekaran, S., A. Michaels, P. Campbell, and J. Shaw. Scopolamine permation through human skin in vitro. AIChE J. 22:828–832, 1976.

    Article  CAS  Google Scholar 

  11. Chen, Y., S. R. Bathula, Q. Yang, and L. Huang. Targeted nanoparticles deliver siRNA to melanoma. J. Investig. Dermatol. 130:2790–2798, 2010.

    Article  CAS  PubMed  Google Scholar 

  12. Chen, M., S. Kumar, A. C. Anselmo, V. Gupta, D. H. Slee, J. A. Muraski, and S. Mitragotri. Topical delivery of cyclosporine A into the skin using SPACE-peptide. J. Control. Release 199:190–197, 2015.

    Article  CAS  PubMed  Google Scholar 

  13. Chen, Y., Y. Shen, X. Guo, C. Zhang, W. Yang, M. Ma, S. Liu, M. Zhang, and L.-P. Wen. Transdermal protein delivery by a coadministered peptide identified via phage display. Nat. Biotechnol. 24:455–460, 2006.

    Article  CAS  PubMed  Google Scholar 

  14. Chen, M., M. Zakrewsky, V. Gupta, A. C. Anselmo, D. H. Slee, J. A. Muraski, and S. Mitragotri. Topical delivery of siRNA into skin using SPACE-peptide carriers. J. Control. Release 179:33–41, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Desai, P. R., S. Marepally, A. R. Patel, C. Voshavar, A. Chaudhuri, and M. Singh. Topical delivery of anti-TNFα siRNA and capsaicin via novel lipid-polymer hybrid nanoparticles efficiently inhibits skin inflammation in vivo. J. Control. Release 170:51–63, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Devi, G. R. siRNA-based approaches in cancer therapy. Cancer Gene Ther. 13:819–829, 2006.

    Article  CAS  PubMed  Google Scholar 

  17. Dikic, I. Mechanisms controlling EGF receptor endocytosis and degradation. Biochem. Soc. Trans. 31:1178–1181, 2003.

    Article  CAS  PubMed  Google Scholar 

  18. Eissing, T., H. Conzelmann, E. D. Gilles, F. Allgower, E. Bullinger, and P. Scheurich. Bistability analyses of a caspase activation model for receptor-induced apoptosis. J. Biol. Chem. 279:36892–36897, 2004.

    Article  CAS  PubMed  Google Scholar 

  19. Garcia, M., F. Larcher, R. P. Hickerson, E. Baselga, S. A. Leachman, R. L. Kaspar, and M. Del Rio. Development of skin-humanized mouse models of pachyonychia congenita. J. Investig. Dermatol. 131:1053–1060, 2011.

    Article  CAS  PubMed  Google Scholar 

  20. Godin, B., and E. Touitou. Transdermal skin delivery: predictions for humans from in vivo, ex vivo and animal models. Adv. Drug Deliv. Rev. 59:1152–1161, 2007.

    Article  CAS  PubMed  Google Scholar 

  21. Goodlett, C. R., and K. H. Horn. Mechanisms of alcohol-induced damage to the developing nervous system. Alcohol Res. Health 25:175–184, 2001.

    CAS  PubMed  Google Scholar 

  22. Goodman, T. T., J. Chen, K. Matveev, and S. H. Pun. Spatio-temporal modeling of nanoparticle delivery to multicellular tumor spheroids. Biotechnol. Bioeng. 101:388–399, 2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Graff, C. P., and K. D. Wittrup. Theoretical analysis of antibody targeting of tumor spheroids importance of dosage for penetration, and affinity for retention. Can. Res. 63:1288–1296, 2003.

    CAS  Google Scholar 

  24. Gu, W., Z. Jia, N. P. Truong, I. Prasadam, Y. Xiao, and M. J. Monteiro. Polymer nanocarrier system for endosome escape and timed release of siRNA with complete gene silencing and cell death in cancer cells. Biomacromol 14:3386–3389, 2013.

    Article  CAS  Google Scholar 

  25. Gu, W. Y., H. Yao, A. L. Vega, and D. Flagler. Diffusivity of ions in agarose gels and intervertebral disc: effect of porosity. Ann. Biomed. Eng. 32:1710–1717, 2004.

    Article  PubMed  Google Scholar 

  26. Hengge, U. R., E. F. Chan, R. A. Foster, P. S. Walker, and J. C. Vogel. Cytokine egne-expression in epidermis with biological effects following injection of naked DNA. Nat. Genet. 10:161–166, 1995.

    Article  CAS  PubMed  Google Scholar 

  27. Hong, J., Y. Zhao, and W. Huang. Blocking c-myc and stat3 by E. coli expressed and enzyme digested siRNA in mouse melanoma. Biochem. Biophys. Res. Commun. 348:600–605, 2006.

    Article  CAS  PubMed  Google Scholar 

  28. Hsu, T., and S. Mitragotri. Delivery of siRNA and other macromolecules into skin and cells using a peptide enhancer. Proc. Natl. Acad. Sci. USA 108:15816–15821, 2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Irrechukwu, O. N., and M. E. Levenston. Improved estimation of solute diffusivity through numerical analysis of FRAP experiments. Cell. Mol. Bioeng. 2:104–117, 2009.

    Article  CAS  Google Scholar 

  30. Jemal, A., R. Siegel, E. Ward, Y. Hao, J. Xu, and M. J. Thun. Cancer statistics, 2009. CA Cancer J. Clin. 59:225–249, 2009.

    Article  PubMed  Google Scholar 

  31. Kalia, Y. N., and R. H. Guy. Modeling transdermal drug release. Adv. Drug Deliv. Rev. 48:159–172, 2001.

    Article  CAS  PubMed  Google Scholar 

  32. Karande, P., A. Jain, and S. Mitragotri. Discovery of transdermal penetration enhancers by high-throughput screening. Nat. Biotechnol. 22:192–197, 2004.

    Article  CAS  PubMed  Google Scholar 

  33. Kim, K. S., K. Ita, and L. Simon. Modelling of dissolving microneedles for transdermal drug delivery: theoretical and experimental aspects. Eur. J. Pharm. Sci. 68:137–143, 2015.

    Article  CAS  PubMed  Google Scholar 

  34. Kiran, K. L., D. Jayachandran, and S. Lakshminarayanan. Mathematical modelling of avascular tumor growth based on diffusion of nutrients and its validation. Can. J. Chem. Eng. 87:732–740, 2009.

    Article  CAS  Google Scholar 

  35. Kobayashi, D., T. Matsuzawa, K. Sugibayashi, Y. Morimoto, and M. Kimura. Analysis of the combined effect of 1-menthol and ethanol as skin permeation enhancers based on a two-layer skin model. Pharm. Res. 11:96–103, 1994.

    Article  CAS  PubMed  Google Scholar 

  36. Koizumi, T., M. Ueda, M. Kakemi, and H. Kameda. Rate of release of medicaments from ointment bases containing drugs in suspension. Chem. Pharm. Bull. 23:3288–3292, 1975.

    Article  CAS  PubMed  Google Scholar 

  37. Kretsos, K., G. B. Kasting, and J. M. Nitsche. Distributed diffusion–clearance model for transient drug distribution within the skin. J. Pharm. Sci. 93:2820–2835, 2004.

    Article  CAS  PubMed  Google Scholar 

  38. Kumar, S., M. Chen, A. C. Anselmo, J. A. Muraski, and S. Mitragotri. Enhanced epidermal localization of topically applied steroids using SPACE peptide. Drug Deliv. Transl. Res. 5:523–530, 2015.

    Article  CAS  PubMed  Google Scholar 

  39. Leachman, S. A., R. P. Hickerson, M. E. Schwartz, E. E. Bullough, S. L. Hutcherson, K. M. Boucher, C. D. Hansen, M. J. Eliason, G. S. Srivatsa, D. J. Kornbrust, F. J. D. Smith, W. H. I. McLean, L. M. Milstone, and R. L. Kaspar. First-in-human mutation-targeted siRNA phase Ib trial of an inherited skin disorder. Mol. Ther. 18:442–446, 2010.

    Article  CAS  PubMed  Google Scholar 

  40. Lee, A. J., J. R. King, and D. A. Barrett. Percutaneous absorption: a multiple pathway model. J. Control. Release 45:141–151, 1997.

    Article  CAS  Google Scholar 

  41. Lee, A. J., J. R. King, and T. G. Rogers. A multiple-pathway model for the diffusion of drugs in skin. IMA J. Math. Appl. Med. Biol. 13:127–150, 1996.

    Article  CAS  PubMed  Google Scholar 

  42. Li, S.-D., S. Chono, and L. Huang. Efficient oncogene silencing and metastasis inhibition via systemic delivery of siRNA. Mol. Ther. 16:942–946, 2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Macklin, P., and J. Lowengrub. Nonlinear simulation of the effect of microenvironment on tumor growth. J. Theor. Biol. 245:677–704, 2007.

    Article  CAS  PubMed  Google Scholar 

  44. Manitz, R., W. Lucht, K. Strehmel, R. Weiner, and R. Neubert. On mathematical modeling of dermal and transdermal drug delivery. J. Pharm. Sci. 87:873–879, 1998.

    Article  CAS  PubMed  Google Scholar 

  45. Márquez-Rodas, I., S. M. Algarra, J. A. A. Izquierdo, S. C. Cabello, and M. Martín. A new era in the treatment of melanoma: from biology to clinical practice. Clin. Transl. Oncol. 13:787–792, 2011.

    Article  PubMed  Google Scholar 

  46. Mccarley, K. D., and A. L. Bunge. Pharmacokinetic models of dermal absorption. J. Pharm. Sci. 90:1699–1719, 2001.

    Article  CAS  PubMed  Google Scholar 

  47. Mirmohammadsadegh, A., M. Hassan, A. Gustrau, R. Doroudi, N. Schmittner, S. Nambiar, A. Tannapfel, T. Ruzicka, and U. R. Hengge. Constitutive expression of epidermal growth factor receptors on normal human melanocytes. J. Investig. Dermatol. 125:392–394, 2005.

    Article  CAS  PubMed  Google Scholar 

  48. Norris, E. S., J. R. King, and H. M. Byrne. Modelling the response of spatially structured tumours to chemotherapy: drug kinetics. Math. Comput. Model. 43:820–837, 2006.

    Article  Google Scholar 

  49. Prausnitz, M. R., and R. Langer. Transdermal drug delivery. Nat. Biotechnol. 26:1261–1268, 2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Rao, Y.-F., W. Chen, X.-G. Liang, Y.-Z. Huang, J. Miao, L. Liu, Y. Lou, X.-G. Zhang, B. Wang, R.-K. Tang, Z. Chen, and X.-Y. Lu. Epirubicin-loaded superparamagnetic iron-oxide nanoparticles for transdermal delivery: cancer therapy by circumventing the skin barrier. Small 11:239–247, 2015.

    Article  CAS  PubMed  Google Scholar 

  51. Rim, J. E., P. M. Pinsky, and W. W. van Osdol. Finite element modeling of coupled diffusion with partitioning in transdermal drug delivery. Ann. Biomed. Eng. 33:1422–1438, 2005.

    Article  PubMed  Google Scholar 

  52. Ruan, R., M. Chen, S. Sun, P. Wei, L. Zou, J. Liu, D. Gao, L. Wen, and W. Ding. Topical and targeted delivery of siRNAs to melanoma cells using a fusion peptide carrier. Scient. Rep. 6:29159, 2016.

    Article  CAS  Google Scholar 

  53. Shenenberger, D. W. Cutaneous malignant melanoma: a primary care perspective. Am. Fam. Phys. 85:161–168, 2012.

    Google Scholar 

  54. Siu, K. S., D. Chen, X. Zheng, X. Zhang, N. Johnston, Y. Liu, K. Yuan, J. Koropatnick, E. R. Gillies, and W.-P. Min. Non-covalently functionalized single-walled carbon nanotube for topical siRNA delivery into melanoma. Biomaterials 35:3435–3442, 2014.

    Article  CAS  PubMed  Google Scholar 

  55. Sladden, M. J., C. Balch, D. A. Barzilai, D. Berg, A. Freiman, T. Handiside, S. Hollis, M. B. Lens, and J. F. Thompson. Surgical excision margins for primary cutaneous melanoma. Cochrane Database Syst. Rev. 2009. doi:10.1002/14651858.CD004835.pub2.

    PubMed  Google Scholar 

  56. Snorradottir, B. S., F. Jonsdottir, S. T. Sigurdsson, and M. Masson. Numerical modelling of transdermal delivery from matrix systems: parametric study and experimental validation with silicone matrices. J. Pharm. Sci. 103:2366–2375, 2014.

    Article  CAS  PubMed  Google Scholar 

  57. Vizseralek, G., S. Berko, G. Toth, R. Balogh, M. Budai-Szucs, E. Csanyi, B. Sinko, and K. Takacs-Novak. Permeability test for transdermal and local therapeutic patches using skin PAMPA method. Eur. J. Pharm. Sci. 76:165–172, 2015.

    Article  CAS  PubMed  Google Scholar 

  58. Ward, J. P., and J. R. King. Mathematical modelling of avascular-tumour growth. IMA J. Math. Appl. Med. Biol. 14:39–69, 1997.

    Article  CAS  PubMed  Google Scholar 

  59. Weissberg, H. L. Effective diffusion coefficient in porous media. J. Appl. Phys. 34:2636–2639, 1963.

    Article  CAS  Google Scholar 

  60. Yamashita, F., and M. Hashida. Mechanistic and empirical modeling of skin permeation of drugs. Adv. Drug Deliv. Rev. 55:1185–1199, 2003.

    Article  CAS  PubMed  Google Scholar 

  61. Zheng, D., D. A. Giljohann, D. L. Chen, M. D. Massich, X.-Q. Wang, H. Iordanov, C. A. Mirkin, and A. S. Paller. Topical delivery of siRNA-based spherical nucleic acid nanoparticle conjugates for gene regulation. Proc. Natl. Acad. Sci. USA 109:11975–11980, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Zhuang, D., S. Mannava, V. Grachtchouk, W. H. Tang, S. Patil, J. A. Wawrzyniak, A. E. Berman, T. J. Giordano, E. V. Prochownik, M. S. Soengas, and M. A. Nikiforov. C-MYC overexpression is required for continuous suppression of oncogene-induced senescence in melanoma cells. Oncogene 27:6623–6634, 2008.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported partly by the Specialized Research Fund for the Doctoral Program of Higher Education of China (20133402120033), the National Natural Science Foundation of China (81571768, 81627806), and the Natural Science Foundation of Anhui Province (1408085ME96). We would like to thank Research Center for Life Sciences at the University of Science and Technology of China for assistance.

Author Contributions

J.L. and W.D. developed the theoretical model. J.L. accomplished the numerical simulation and data analysis. R.R, W.D., M.C. and L.W. designed the experiments. R.R., L.Z., M.C. and P.W. conducted the experiments. J.L. wrote the manuscript with inputs from all co-authors. All authors reviewed the manuscript.

Conflict of interest

The authors declare no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiping Ding.

Additional information

Associate Editor Aleksander S. Popel oversaw the review of this article.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Ding, W., Ruan, R. et al. A Theoretical Study on Inhibition of Melanoma with Controlled and Targeted Delivery of siRNA via Skin Using SPACE-EGF. Ann Biomed Eng 45, 1407–1419 (2017). https://doi.org/10.1007/s10439-017-1825-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-017-1825-5

Keywords

Navigation