Annals of Biomedical Engineering

, Volume 45, Issue 6, pp 1407–1419 | Cite as

A Theoretical Study on Inhibition of Melanoma with Controlled and Targeted Delivery of siRNA via Skin Using SPACE-EGF

  • Juanjuan Liu
  • Weiping Ding
  • Renquan Ruan
  • Lili Zou
  • Ming Chen
  • Pengfei Wei
  • Longping Wen


Melanoma is a potentially lethal skin cancer with high mortality rate. Recently, the peptide-mediated transdermal delivery of small interference RNA (siRNA) emerges as a promising strategy to treat melanoma by inducing the apoptosis of tumor cells, but the related theoretical model describing the delivery of siRNA under the effect of SPACE-EGF, the growth inhibition of melanoma and the dynamic expanding of the bump on the skin due to the growth of melanoma has not been reported yet. In this article, a theoretical model is developed to describe the percutaneous siRNA delivery mediated by SPACE-EGF to melanoma and the growth inhibition of melanoma. The results present the spatial–temporal distribution of siRNA and the growth of melanoma under the inhibition of siRNA, which shows a good consistency with the experimental results. In addition, this model represents the uplift process of tumors on the skin surface. The model presented here is a useful tool to understand the whole process of the SPACE-EGF-mediated delivery of the siRNA to melanoma through skin, to predict the therapeutic effect, and to optimize the therapeutic strategy, providing valuable references for the treatment of melanoma.


Melanoma siRNA Peptide carrier Tumor growth inhibition Transdermal drug delivery 



This work was supported partly by the Specialized Research Fund for the Doctoral Program of Higher Education of China (20133402120033), the National Natural Science Foundation of China (81571768, 81627806), and the Natural Science Foundation of Anhui Province (1408085ME96). We would like to thank Research Center for Life Sciences at the University of Science and Technology of China for assistance.

Author Contributions

J.L. and W.D. developed the theoretical model. J.L. accomplished the numerical simulation and data analysis. R.R, W.D., M.C. and L.W. designed the experiments. R.R., L.Z., M.C. and P.W. conducted the experiments. J.L. wrote the manuscript with inputs from all co-authors. All authors reviewed the manuscript.

Conflict of interest

The authors declare no competing financial interests.

Supplementary material

10439_2017_1825_MOESM1_ESM.gif (1.7 mb)
Supplementary material 1 (GIF 1782 kb)
10439_2017_1825_MOESM2_ESM.gif (473 kb)
Supplementary material 2 (GIF 472 kb)
10439_2017_1825_MOESM3_ESM.gif (441 kb)
Supplementary material 3 (GIF 441 kb)
10439_2017_1825_MOESM4_ESM.gif (372 kb)
Supplementary material 4 (GIF 371 kb)
10439_2017_1825_MOESM5_ESM.gif (210 kb)
Supplementary material 5 (GIF 209 kb)
10439_2017_1825_MOESM6_ESM.gif (438 kb)
Supplementary material 6 (GIF 437 kb)
10439_2017_1825_MOESM7_ESM.gif (321 kb)
Supplementary material 7 (GIF 320 kb)
10439_2017_1825_MOESM8_ESM.gif (311 kb)
Supplementary material 8 (GIF 310 kb)


  1. 1.
    Adam, J. A. A simplified mathematical-model of tumor-growth. Math. Biosci. 81:229–244, 1986.CrossRefGoogle Scholar
  2. 2.
    Ahn, J.-H., and M. Lee. The siRNA-mediated downregulation of N-Ras sensitizes human melanoma cells to apoptosis induced by selective BRAF inhibitors. Mol. Cell. Biochem. 392:239–247, 2014.CrossRefPubMedGoogle Scholar
  3. 3.
    Bartlett, D. W., and M. E. Davis. Insights into the kinetics of siRNA-mediated gene silencing from live-cell and live-animal bioluminescent imaging. Nucleic Acids Res. 34:322–333, 2006.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Bartlett, D. W., H. Su, I. J. Hildebrandt, W. A. Weber, and M. E. Davis. Impact of tumor-specific targeting on the biodistribution and efficacy of siRNA nanoparticles measured by multimodality in vivo imaging. Proc. Natl. Acad. Sci. USA 104:15549–15554, 2007.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Bentele, M., I. Lavrik, M. Ulrich, S. Stosser, D. W. Heermann, H. Kalthoff, P. H. Krammer, and R. Eils. Mathematical modeling reveals threshold mechanism in CD95-induced apoptosis. J. Cell Biol. 166:839–851, 2004.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Bernardo, F. P., and P. M. Saraiva. A theoretical model for transdermal drug delivery from emulsions and its dependence upon formulation. J. Pharm. Sci. 97:3781–3809, 2008.CrossRefPubMedGoogle Scholar
  7. 7.
    Busini, V., P. Arosio, and M. Masi. Mechanistic modelling of avascular tumor growth and pharmacokinetics influence: part I. Chem. Eng. Sci. 62:1877–1886, 2007.CrossRefGoogle Scholar
  8. 8.
    Byrne, H. M., and M. A. J. Chaplain. Growth of necrotic tumors in the presence and absence of inhibitors. Math. Biosci. 135:187–216, 1996.CrossRefPubMedGoogle Scholar
  9. 9.
    Byrne, H., and L. Preziosi. Modelling solid tumour growth using the theory of mixtures. Math. Med. Biol. 20:341–366, 2003.CrossRefPubMedGoogle Scholar
  10. 10.
    Chandrasekaran, S., A. Michaels, P. Campbell, and J. Shaw. Scopolamine permation through human skin in vitro. AIChE J. 22:828–832, 1976.CrossRefGoogle Scholar
  11. 11.
    Chen, Y., S. R. Bathula, Q. Yang, and L. Huang. Targeted nanoparticles deliver siRNA to melanoma. J. Investig. Dermatol. 130:2790–2798, 2010.CrossRefPubMedGoogle Scholar
  12. 12.
    Chen, M., S. Kumar, A. C. Anselmo, V. Gupta, D. H. Slee, J. A. Muraski, and S. Mitragotri. Topical delivery of cyclosporine A into the skin using SPACE-peptide. J. Control. Release 199:190–197, 2015.CrossRefPubMedGoogle Scholar
  13. 13.
    Chen, Y., Y. Shen, X. Guo, C. Zhang, W. Yang, M. Ma, S. Liu, M. Zhang, and L.-P. Wen. Transdermal protein delivery by a coadministered peptide identified via phage display. Nat. Biotechnol. 24:455–460, 2006.CrossRefPubMedGoogle Scholar
  14. 14.
    Chen, M., M. Zakrewsky, V. Gupta, A. C. Anselmo, D. H. Slee, J. A. Muraski, and S. Mitragotri. Topical delivery of siRNA into skin using SPACE-peptide carriers. J. Control. Release 179:33–41, 2014.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Desai, P. R., S. Marepally, A. R. Patel, C. Voshavar, A. Chaudhuri, and M. Singh. Topical delivery of anti-TNFα siRNA and capsaicin via novel lipid-polymer hybrid nanoparticles efficiently inhibits skin inflammation in vivo. J. Control. Release 170:51–63, 2013.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Devi, G. R. siRNA-based approaches in cancer therapy. Cancer Gene Ther. 13:819–829, 2006.CrossRefPubMedGoogle Scholar
  17. 17.
    Dikic, I. Mechanisms controlling EGF receptor endocytosis and degradation. Biochem. Soc. Trans. 31:1178–1181, 2003.CrossRefPubMedGoogle Scholar
  18. 18.
    Eissing, T., H. Conzelmann, E. D. Gilles, F. Allgower, E. Bullinger, and P. Scheurich. Bistability analyses of a caspase activation model for receptor-induced apoptosis. J. Biol. Chem. 279:36892–36897, 2004.CrossRefPubMedGoogle Scholar
  19. 19.
    Garcia, M., F. Larcher, R. P. Hickerson, E. Baselga, S. A. Leachman, R. L. Kaspar, and M. Del Rio. Development of skin-humanized mouse models of pachyonychia congenita. J. Investig. Dermatol. 131:1053–1060, 2011.CrossRefPubMedGoogle Scholar
  20. 20.
    Godin, B., and E. Touitou. Transdermal skin delivery: predictions for humans from in vivo, ex vivo and animal models. Adv. Drug Deliv. Rev. 59:1152–1161, 2007.CrossRefPubMedGoogle Scholar
  21. 21.
    Goodlett, C. R., and K. H. Horn. Mechanisms of alcohol-induced damage to the developing nervous system. Alcohol Res. Health 25:175–184, 2001.PubMedGoogle Scholar
  22. 22.
    Goodman, T. T., J. Chen, K. Matveev, and S. H. Pun. Spatio-temporal modeling of nanoparticle delivery to multicellular tumor spheroids. Biotechnol. Bioeng. 101:388–399, 2008.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Graff, C. P., and K. D. Wittrup. Theoretical analysis of antibody targeting of tumor spheroids importance of dosage for penetration, and affinity for retention. Can. Res. 63:1288–1296, 2003.Google Scholar
  24. 24.
    Gu, W., Z. Jia, N. P. Truong, I. Prasadam, Y. Xiao, and M. J. Monteiro. Polymer nanocarrier system for endosome escape and timed release of siRNA with complete gene silencing and cell death in cancer cells. Biomacromol 14:3386–3389, 2013.CrossRefGoogle Scholar
  25. 25.
    Gu, W. Y., H. Yao, A. L. Vega, and D. Flagler. Diffusivity of ions in agarose gels and intervertebral disc: effect of porosity. Ann. Biomed. Eng. 32:1710–1717, 2004.CrossRefPubMedGoogle Scholar
  26. 26.
    Hengge, U. R., E. F. Chan, R. A. Foster, P. S. Walker, and J. C. Vogel. Cytokine egne-expression in epidermis with biological effects following injection of naked DNA. Nat. Genet. 10:161–166, 1995.CrossRefPubMedGoogle Scholar
  27. 27.
    Hong, J., Y. Zhao, and W. Huang. Blocking c-myc and stat3 by E. coli expressed and enzyme digested siRNA in mouse melanoma. Biochem. Biophys. Res. Commun. 348:600–605, 2006.CrossRefPubMedGoogle Scholar
  28. 28.
    Hsu, T., and S. Mitragotri. Delivery of siRNA and other macromolecules into skin and cells using a peptide enhancer. Proc. Natl. Acad. Sci. USA 108:15816–15821, 2011.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Irrechukwu, O. N., and M. E. Levenston. Improved estimation of solute diffusivity through numerical analysis of FRAP experiments. Cell. Mol. Bioeng. 2:104–117, 2009.CrossRefGoogle Scholar
  30. 30.
    Jemal, A., R. Siegel, E. Ward, Y. Hao, J. Xu, and M. J. Thun. Cancer statistics, 2009. CA Cancer J. Clin. 59:225–249, 2009.CrossRefPubMedGoogle Scholar
  31. 31.
    Kalia, Y. N., and R. H. Guy. Modeling transdermal drug release. Adv. Drug Deliv. Rev. 48:159–172, 2001.CrossRefPubMedGoogle Scholar
  32. 32.
    Karande, P., A. Jain, and S. Mitragotri. Discovery of transdermal penetration enhancers by high-throughput screening. Nat. Biotechnol. 22:192–197, 2004.CrossRefPubMedGoogle Scholar
  33. 33.
    Kim, K. S., K. Ita, and L. Simon. Modelling of dissolving microneedles for transdermal drug delivery: theoretical and experimental aspects. Eur. J. Pharm. Sci. 68:137–143, 2015.CrossRefPubMedGoogle Scholar
  34. 34.
    Kiran, K. L., D. Jayachandran, and S. Lakshminarayanan. Mathematical modelling of avascular tumor growth based on diffusion of nutrients and its validation. Can. J. Chem. Eng. 87:732–740, 2009.CrossRefGoogle Scholar
  35. 35.
    Kobayashi, D., T. Matsuzawa, K. Sugibayashi, Y. Morimoto, and M. Kimura. Analysis of the combined effect of 1-menthol and ethanol as skin permeation enhancers based on a two-layer skin model. Pharm. Res. 11:96–103, 1994.CrossRefPubMedGoogle Scholar
  36. 36.
    Koizumi, T., M. Ueda, M. Kakemi, and H. Kameda. Rate of release of medicaments from ointment bases containing drugs in suspension. Chem. Pharm. Bull. 23:3288–3292, 1975.CrossRefPubMedGoogle Scholar
  37. 37.
    Kretsos, K., G. B. Kasting, and J. M. Nitsche. Distributed diffusion–clearance model for transient drug distribution within the skin. J. Pharm. Sci. 93:2820–2835, 2004.CrossRefPubMedGoogle Scholar
  38. 38.
    Kumar, S., M. Chen, A. C. Anselmo, J. A. Muraski, and S. Mitragotri. Enhanced epidermal localization of topically applied steroids using SPACE peptide. Drug Deliv. Transl. Res. 5:523–530, 2015.CrossRefPubMedGoogle Scholar
  39. 39.
    Leachman, S. A., R. P. Hickerson, M. E. Schwartz, E. E. Bullough, S. L. Hutcherson, K. M. Boucher, C. D. Hansen, M. J. Eliason, G. S. Srivatsa, D. J. Kornbrust, F. J. D. Smith, W. H. I. McLean, L. M. Milstone, and R. L. Kaspar. First-in-human mutation-targeted siRNA phase Ib trial of an inherited skin disorder. Mol. Ther. 18:442–446, 2010.CrossRefPubMedGoogle Scholar
  40. 40.
    Lee, A. J., J. R. King, and D. A. Barrett. Percutaneous absorption: a multiple pathway model. J. Control. Release 45:141–151, 1997.CrossRefGoogle Scholar
  41. 41.
    Lee, A. J., J. R. King, and T. G. Rogers. A multiple-pathway model for the diffusion of drugs in skin. IMA J. Math. Appl. Med. Biol. 13:127–150, 1996.CrossRefPubMedGoogle Scholar
  42. 42.
    Li, S.-D., S. Chono, and L. Huang. Efficient oncogene silencing and metastasis inhibition via systemic delivery of siRNA. Mol. Ther. 16:942–946, 2008.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Macklin, P., and J. Lowengrub. Nonlinear simulation of the effect of microenvironment on tumor growth. J. Theor. Biol. 245:677–704, 2007.CrossRefPubMedGoogle Scholar
  44. 44.
    Manitz, R., W. Lucht, K. Strehmel, R. Weiner, and R. Neubert. On mathematical modeling of dermal and transdermal drug delivery. J. Pharm. Sci. 87:873–879, 1998.CrossRefPubMedGoogle Scholar
  45. 45.
    Márquez-Rodas, I., S. M. Algarra, J. A. A. Izquierdo, S. C. Cabello, and M. Martín. A new era in the treatment of melanoma: from biology to clinical practice. Clin. Transl. Oncol. 13:787–792, 2011.CrossRefPubMedGoogle Scholar
  46. 46.
    Mccarley, K. D., and A. L. Bunge. Pharmacokinetic models of dermal absorption. J. Pharm. Sci. 90:1699–1719, 2001.CrossRefPubMedGoogle Scholar
  47. 47.
    Mirmohammadsadegh, A., M. Hassan, A. Gustrau, R. Doroudi, N. Schmittner, S. Nambiar, A. Tannapfel, T. Ruzicka, and U. R. Hengge. Constitutive expression of epidermal growth factor receptors on normal human melanocytes. J. Investig. Dermatol. 125:392–394, 2005.CrossRefPubMedGoogle Scholar
  48. 48.
    Norris, E. S., J. R. King, and H. M. Byrne. Modelling the response of spatially structured tumours to chemotherapy: drug kinetics. Math. Comput. Model. 43:820–837, 2006.CrossRefGoogle Scholar
  49. 49.
    Prausnitz, M. R., and R. Langer. Transdermal drug delivery. Nat. Biotechnol. 26:1261–1268, 2008.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Rao, Y.-F., W. Chen, X.-G. Liang, Y.-Z. Huang, J. Miao, L. Liu, Y. Lou, X.-G. Zhang, B. Wang, R.-K. Tang, Z. Chen, and X.-Y. Lu. Epirubicin-loaded superparamagnetic iron-oxide nanoparticles for transdermal delivery: cancer therapy by circumventing the skin barrier. Small 11:239–247, 2015.CrossRefPubMedGoogle Scholar
  51. 51.
    Rim, J. E., P. M. Pinsky, and W. W. van Osdol. Finite element modeling of coupled diffusion with partitioning in transdermal drug delivery. Ann. Biomed. Eng. 33:1422–1438, 2005.CrossRefPubMedGoogle Scholar
  52. 52.
    Ruan, R., M. Chen, S. Sun, P. Wei, L. Zou, J. Liu, D. Gao, L. Wen, and W. Ding. Topical and targeted delivery of siRNAs to melanoma cells using a fusion peptide carrier. Scient. Rep. 6:29159, 2016.CrossRefGoogle Scholar
  53. 53.
    Shenenberger, D. W. Cutaneous malignant melanoma: a primary care perspective. Am. Fam. Phys. 85:161–168, 2012.Google Scholar
  54. 54.
    Siu, K. S., D. Chen, X. Zheng, X. Zhang, N. Johnston, Y. Liu, K. Yuan, J. Koropatnick, E. R. Gillies, and W.-P. Min. Non-covalently functionalized single-walled carbon nanotube for topical siRNA delivery into melanoma. Biomaterials 35:3435–3442, 2014.CrossRefPubMedGoogle Scholar
  55. 55.
    Sladden, M. J., C. Balch, D. A. Barzilai, D. Berg, A. Freiman, T. Handiside, S. Hollis, M. B. Lens, and J. F. Thompson. Surgical excision margins for primary cutaneous melanoma. Cochrane Database Syst. Rev. 2009. doi: 10.1002/14651858.CD004835.pub2.PubMedGoogle Scholar
  56. 56.
    Snorradottir, B. S., F. Jonsdottir, S. T. Sigurdsson, and M. Masson. Numerical modelling of transdermal delivery from matrix systems: parametric study and experimental validation with silicone matrices. J. Pharm. Sci. 103:2366–2375, 2014.CrossRefPubMedGoogle Scholar
  57. 57.
    Vizseralek, G., S. Berko, G. Toth, R. Balogh, M. Budai-Szucs, E. Csanyi, B. Sinko, and K. Takacs-Novak. Permeability test for transdermal and local therapeutic patches using skin PAMPA method. Eur. J. Pharm. Sci. 76:165–172, 2015.CrossRefPubMedGoogle Scholar
  58. 58.
    Ward, J. P., and J. R. King. Mathematical modelling of avascular-tumour growth. IMA J. Math. Appl. Med. Biol. 14:39–69, 1997.CrossRefPubMedGoogle Scholar
  59. 59.
    Weissberg, H. L. Effective diffusion coefficient in porous media. J. Appl. Phys. 34:2636–2639, 1963.CrossRefGoogle Scholar
  60. 60.
    Yamashita, F., and M. Hashida. Mechanistic and empirical modeling of skin permeation of drugs. Adv. Drug Deliv. Rev. 55:1185–1199, 2003.CrossRefPubMedGoogle Scholar
  61. 61.
    Zheng, D., D. A. Giljohann, D. L. Chen, M. D. Massich, X.-Q. Wang, H. Iordanov, C. A. Mirkin, and A. S. Paller. Topical delivery of siRNA-based spherical nucleic acid nanoparticle conjugates for gene regulation. Proc. Natl. Acad. Sci. USA 109:11975–11980, 2012.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Zhuang, D., S. Mannava, V. Grachtchouk, W. H. Tang, S. Patil, J. A. Wawrzyniak, A. E. Berman, T. J. Giordano, E. V. Prochownik, M. S. Soengas, and M. A. Nikiforov. C-MYC overexpression is required for continuous suppression of oncogene-induced senescence in melanoma cells. Oncogene 27:6623–6634, 2008.CrossRefPubMedGoogle Scholar

Copyright information

© Biomedical Engineering Society 2017

Authors and Affiliations

  • Juanjuan Liu
    • 1
    • 2
  • Weiping Ding
    • 1
    • 2
  • Renquan Ruan
    • 3
  • Lili Zou
    • 1
    • 2
  • Ming Chen
    • 3
    • 4
  • Pengfei Wei
    • 3
  • Longping Wen
    • 3
  1. 1.Center for Biomedical EngineeringUniversity of Science and Technology of ChinaHefeiChina
  2. 2.Department of Electronic Science and TechnologyUniversity of Science and Technology of ChinaHefeiChina
  3. 3.School of Life SciencesUniversity of Science and Technology of ChinaHefeiChina
  4. 4.Department of PharmacologyAnhui University of Chinese MedicineHefeiChina

Personalised recommendations