Skip to main content
Log in

Microfluidic Encapsulation of Ovarian Follicles for 3D Culture

  • Reproductive Tissue Engineering
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The ovarian follicle that contains one single oocyte is the fundamental functional tissue unit of mammalian ovary. Therefore, isolation and in vitro culture of ovarian follicles to obtain fertilizable oocytes are regarded as a promising strategy for women to combat infertility. In this communication, we performed a brief survey of studies on microfluidic encapsulation of ovarian follicles in core–shell hydrogel microcapsules for biomimetic 3D culture. These studies highlighted that recapitulation of the mechanical heterogeneity of the extracellular matrix in ovary is crucial for in vitro culture to develop early pre-antral follicles to the antral stage, and for the release of cumulus–oocyte complex (COC) from antral follicles in vitro. The hydrogel encapsulation-based biomimetic culture system and the microfluidic technology may be invaluable to facilitate follicle culture as a viable option for restoring women’s fertility in the clinic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Agarwal, P., J. K. Choi, H. Huang, S. Zhao, J. Dumbleton, J. Li, and X. He. A biomimetic core-shell platform for miniaturized 3d cell and tissue engineering. Part. Part. Syst. Charact. 32:809–816, 2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Agarwal, P., S. Zhao, P. Bielecki, W. Rao, J. K. Choi, Y. Zhao, J. Yu, W. Zhang, and X. He. One-step microfluidic generation of pre-hatching embryo-like core-shell microcapsules for miniaturized 3d culture of pluripotent stem cells. Lab Chip 13:4525–4533, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Andersen, C. Y., S. G. Kristensen, T. Greve, and K. T. Schmidt. Cryopreservation of ovarian tissue for fertility preservation in young female oncological patients. Future Oncol. 8:595–608, 2012.

    Article  CAS  PubMed  Google Scholar 

  4. Barnett, K. R., C. Schilling, C. R. Greenfeld, D. Tomic, and J. A. Flaws. Ovarian follicle development and transgenic mouse models. Hum. Reprod. Update 12:537–555, 2006.

    Article  CAS  PubMed  Google Scholar 

  5. Baroud, C. N., F. Gallaire, and R. Dangla. Dynamics of microfluidic droplets. Lab Chip 10:2032–2045, 2010.

    Article  CAS  PubMed  Google Scholar 

  6. Berkholtz, C. B., L. D. Shea, and T. K. Woodruff. Extracellular matrix functions in follicle maturation. Semin. Reprod. Med. 24:262–269, 2006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Broekmans, F. J., M. R. Soules, and B. C. Fauser. Ovarian aging: mechanisms and clinical consequences. Endocr. Rev. 30:465–493, 2009.

    Article  CAS  PubMed  Google Scholar 

  8. CDC. National Survey of Family Growth. http://www.cdc.gov/nchs/nsfg.htm. Accessed 2016.

  9. Choi, J. K., P. Agarwal, and X. He. In vitro culture of early secondary preantral follicles in hanging drop of ovarian cell-conditioned medium to obtain MII oocytes from outbred deer mice. Tissue Eng. Part A 19:2626–2637, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Choi, J. K., P. Agarwal, H. Huang, S. Zhao, and X. He. The crucial role of mechanical heterogeneity in regulating follicle development and ovulation with engineered ovarian microtissue. Biomaterials 35:5122–5128, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Choi, J. K., and X. He. In vitro maturation of cumulus–oocyte complexes for efficient isolation of oocytes from outbred deer mice. PLoS ONE 8:e56158, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Choi, J. K., and X. He. Improved oocyte isolation and embryonic development of outbred deer mice. Sci. Rep. 5:12232, 2015.

    Article  CAS  PubMed  Google Scholar 

  13. Cubaud, T., and T. G. Mason. Capillary threads and viscous droplets in square microchannels. Phys. Fluids 20:053302, 2008.

    Article  Google Scholar 

  14. De Vos, M., J. Smitz, and T. K. Woodruff. Fertility preservation in women with cancer. Lancet 384:1302–1310, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Deepinder, F., and A. Agarwal. Technical and ethical challenges of fertility preservation in young cancer patients. Reprod. Biomed. Online 16:784–791, 2008.

    Article  PubMed  Google Scholar 

  16. Desai, N., A. Alex, F. AbdelHafez, A. Calabro, J. Goldfarb, A. Fleischman, and T. Falcone. Three-dimensional in vitro follicle growth: overview of culture models, biomaterials, design parameters and future directions. Reprod. Biol. Endocrinol. 8:119, 2010.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Di Carlo, D., J. F. Edd, K. J. Humphry, H. A. Stone, and M. Toner. Particle segregation and dynamics in confined flows. Phys. Rev. Lett. 102(9):094503, 2009.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Donnez, J., and M. M. Dolmans. Cryopreservation and transplantation of ovarian tissue. Clin. Obstet. Gynecol. 53:787–796, 2010.

    Article  PubMed  Google Scholar 

  19. Donnez, J., P. Jadoul, J. Squifflet, A. Van Langendonckt, O. Donnez, A. S. Van Eyck, C. Marinescu, and M. M. Dolmans. Ovarian tissue cryopreservation and transplantation in cancer patients. Best Pract. Res. Clin. Obstet. Gynaecol. 24:87–100, 2010.

    Article  PubMed  Google Scholar 

  20. Eroglu, A., M. Toner, and T. L. Toth. Beneficial effect of microinjected trehalose on the cryosurvival of human oocytes. Fertil. Steril. 77:152–158, 2002.

    Article  PubMed  Google Scholar 

  21. Fabbri, R. Cryopreservation of human oocytes and ovarian tissue. Cell Tissue Bank 7:113–122, 2006.

    Article  PubMed  Google Scholar 

  22. Fan, H. Y., Z. L. Liu, M. Shimada, E. Sterneck, P. F. Johnson, S. M. Hedrick, and J. S. Richards. Mapk3/1 (Erk1/2) in ovarian granulosa cells are essential for female fertility. Science 324:938–941, 2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Garstecki, P., M. J. Fuerstman, H. A. Stone, and G. M. Whitesides. Formation of droplets and bubbles in a microfluidic T-junction—scaling and mechanism of break-up. Lab Chip 6:437–446, 2006.

    Article  CAS  PubMed  Google Scholar 

  24. Gilchrist, R. B., D. G. Mottershead, and J. G. Thompson. Oocyte maturation and ovulation: an orchestral symphony of signaling. Aust. Biochem. 42(1):8–11, 2011.

    Google Scholar 

  25. Goswami, D., and G. S. Conway. Premature ovarian failure. Hum. Reprod. Update 11:391–410, 2005.

    Article  CAS  PubMed  Google Scholar 

  26. Grynberg, M., M. Poulain, S. Sebag-Peyrelevade, S. le Parco, R. Fanchin, and N. Frydman. Ovarian tissue and follicle transplantation as an option for fertility preservation. Fertil. Steril. 97:1260–1268, 2012.

    Article  PubMed  Google Scholar 

  27. Hassold, T., and P. Hunt. To err (meiotically) is human: the genesis of human aneuploidy. Nat. Rev. Genet. 2:280–291, 2001.

    Article  CAS  PubMed  Google Scholar 

  28. He, X., and T. L. Toth. In vitro culture of ovarian follicles from peromyscus. Semin. Cell Dev. Biol. 61:140–149, 2017.

    Article  CAS  PubMed  Google Scholar 

  29. Hoffman, A. S. Hydrogels for biomedical applications. Ann. N. Y. Acad. Sci. 944:62–73, 2001.

    Article  CAS  PubMed  Google Scholar 

  30. Huang, H., J. K. Choi, W. Rao, S. Zhao, P. Agarwal, G. Zhao, and X. He. Alginate hydrogel microencapsulation inhibits devitrification and enables large-volume low-CPA cell vitrification. Adv. Funct. Mater. 25:6839–6850, 2015.

    Article  Google Scholar 

  31. Huang, H., and X. He. Interfacial tension based on-chip extraction of microparticles confined in microfluidic stokes flows. Appl. Phys. Lett. 105:143704, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Huang, H., and X. He. Fluid displacement during droplet formation at microfluidic flow-focusing junction. Lab Chip 15:4197–4205, 2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Huang, H., and X. He. Microscale materials and devices for cell cryopreservation by vitrification. In: Multiscale Technologies for Cryomedicine-Implementation from Nano to Macroscale, edited by X. He, and J. C. Bischof. Singapore: World Scientific, 2016, pp. 101–124.

    Chapter  Google Scholar 

  34. Huang, H., M. Sun, T. Heisler-Taylor, A. Kiourti, J. Volakis, G. Lafyatis, and X. He. Stiffness-independent highly efficient on-chip extraction of cell-laden hydrogel microcapsules from oil emulsion into aqueous solution by dielectrophoresis. Small 11:5369–5374, 2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Jeruss, J. S., and T. K. Woodruff. Preservation of fertility in patients with cancer. N. Engl. J. Med. 360:902–911, 2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Jin, S. Y., L. Lei, A. Shikanov, L. D. Shea, and T. K. Woodruff. A novel two-step strategy for in vitro culture of early-stage ovarian follicles in the mouse. Fertil. Steril. 93:2633–2639, 2010.

    Article  PubMed  Google Scholar 

  37. Jin, M., Y. Yu, and H. Huang. An update on primary ovarian insufficiency. Sci. China Life Sci. 55:677–686, 2012.

    Article  CAS  PubMed  Google Scholar 

  38. Kim, I. W., S. P. Gong, C. R. Yoo, J. H. Choi, D. Y. Kim, and J. M. Lim. Derivation of developmentally competent oocytes by the culture of preantral follicles retrieved from adult ovaries: maturation, blastocyst formation, and embryonic stem cell transformation. Fertil. Steril. 92:1716–1724, 2009.

    Article  PubMed  Google Scholar 

  39. Ma, X., L. Fan, Y. Meng, Z. Hou, Y. D. L. Mao, W. Wang, W. Ding, and J. Y. Liu. Proteomic analysis of human ovaries from normal and polycystic ovarian syndrome. Mol. Hum. Reprod. 13:527–535, 2007.

    Article  CAS  PubMed  Google Scholar 

  40. Malizia, B. A., M. R. Hacker, and A. S. Penzias. Cumulative live-birth rates after in vitro fertilization. N. Engl. J. Med. 360:236–243, 2009.

    Article  CAS  PubMed  Google Scholar 

  41. Mandelbaum, J., J. Belaisch-Allart, A. M. Junca, J. M. Antoine, M. Plachot, S. Alvarez, M. O. Alnot, and J. Salat-Baroux. Cryopreservation in human assisted reproduction is now routine for embryos but remains a research procedure for oocytes. Hum. Reprod. 13(Suppl 3):161–174, 1998; discussion 175–177.

    Article  PubMed  Google Scholar 

  42. Meirow, D., I. Hardan, J. Dor, E. Fridman, S. Elizur, H. Ra’anani, E. Slyusarevsky, N. Amariglio, E. Schiff, G. Rechavi, et al. Searching for evidence of disease and malignant cell contamination in ovarian tissue stored from hematologic cancer patients. Hum. Reprod. 23:1007–1013, 2008.

    Article  PubMed  Google Scholar 

  43. Park, J. Y., Y. Q. Su, M. Ariga, E. Law, S. L. Jin, and M. Conti. Egf-like growth factors as mediators of Lh action in the ovulatory follicle. Science 303:682–684, 2004.

    Article  CAS  PubMed  Google Scholar 

  44. Porcu, E., R. Fabbri, G. Damiano, R. Fratto, S. Giunchi, and S. Venturoli. Oocyte cryopreservation in oncological patients. Eur. J. Obstet. Gynecol. Reprod. Biol. 113(Suppl 1):S14–S16, 2004.

    Article  PubMed  Google Scholar 

  45. Porcu, E., and S. Venturoli. Progress with oocyte cryopreservation. Curr. Opin. Obstet. Gynecol. 18:273–279, 2006.

    Article  PubMed  Google Scholar 

  46. Rodgers, R. J., I. L. van Wezel, H. F. Irving-Rodgers, T. C. Lavranos, C. M. Irvine, and M. Krupa. Roles of extracellular matrix in follicular development. J. Reprod. Fertil. Suppl. 54:343–352, 1999.

    CAS  PubMed  Google Scholar 

  47. Santos, R. R., C. Amorim, S. Cecconi, M. Fassbender, M. Imhof, J. Lornage, M. Paris, V. Schoenfeldt, and B. Martinez-Madrid. Cryopreservation of ovarian tissue: an emerging technology for female germline preservation of endangered species and breeds. Anim. Reprod. Sci. 122:151–163, 2010.

    Article  CAS  PubMed  Google Scholar 

  48. Scaramuzzi, R. J., D. T. Baird, B. K. Campbell, M. A. Driancourt, J. Dupont, J. E. Fortune, R. B. Gilchrist, G. B. Martin, K. P. McNatty, A. S. McNeilly, et al. Regulation of folliculogenesis and the determination of ovulation rate in ruminants. Reprod. Fertil. Dev. 23:444–467, 2011.

    Article  CAS  PubMed  Google Scholar 

  49. Seemann, R., M. Brinkmann, T. Pfohl, and S. Herminghaus. Droplet based microfluidics. Rep. Prog. Phys. 75(1):01660, 2012.

    Article  Google Scholar 

  50. Shaw, J. M., J. Bowles, P. Koopman, E. C. Wood, and A. O. Trounson. Fresh and cryopreserved ovarian tissue samples from donors with lymphoma transmit the cancer to graft recipients. Hum. Reprod. 11:1668–1673, 1996.

    Article  CAS  PubMed  Google Scholar 

  51. Shikanov, A., M. Xu, T. K. Woodruff, and L. D. Shea. Interpenetrating fibrin-alginate matrices for in vitro ovarian follicle development. Biomaterials 30:5476–5485, 2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Shikanov, A., M. Xu, T. Woodruff, and L. Shea. A method for ovarian follicle encapsulation and culture in a proteolytically degradable 3 dimensional system. J. Vis. Exp. 49:e2695, 2011.

    Google Scholar 

  53. Shimada, M., I. Hernandez-Gonzalez, I. Gonzalez-Robayna, and J. A. S. Richards. Paracrine and autocrine regulation of epidermal growth factor-like factors in cumulus oocyte complexes and granulosa cells: key roles for prostaglandin synthase 2 and progesterone receptor. Mol. Endocrinol. 20:1352–1365, 2006.

    Article  CAS  PubMed  Google Scholar 

  54. Silva, J. R., R. van den Hurk, and J. R. Figueiredo. Ovarian follicle development in vitro and oocyte competence: advances and challenges for farm animals. Domest. Anim. Endocrinol. 55:123–135, 2016.

    Article  CAS  PubMed  Google Scholar 

  55. Skory, R. M., Y. Xu, L. D. Shea, and T. K. Woodruff. Engineering the ovarian cycle using in vitro follicle culture. Hum. Reprod. 30:1386–1395, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Steptoe, P. C., and R. G. Edwards. Birth after the reimplantation of a human embryo. Lancet 2:366, 1978.

    Article  CAS  PubMed  Google Scholar 

  57. Telfer, E. E., and M. B. Zelinski. Ovarian follicle culture: advances and challenges for human and nonhuman primates. Fertil. Steril. 99:1523–1533, 2013.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Trounson, A., and L. Mohr. Human pregnancy following cryopreservation, thawing and transfer of an eight-cell embryo. Nature 305:707–709, 1983.

    Article  CAS  PubMed  Google Scholar 

  59. Tucker, M., P. Morton, and J. Liebermann. Human oocyte cryopreservation: a valid alternative to embryo cryopreservation? Eur. J. Obstet. Gynecol. Reprod. Biol. 113(Suppl 1):S24–S27, 2004.

    Article  PubMed  Google Scholar 

  60. Wallace, W. H., R. A. Anderson, and D. S. Irvine. Fertility preservation for young patients with cancer: who is at risk and what can be offered? Lancet Oncol. 6:209–218, 2005.

    Article  PubMed  Google Scholar 

  61. Wang, W., Y. Tang, L. Ni, T. Jongwutiwes, H.-C. Liu, and Z. Rosenwaks. A modified protocol for in vitro maturation of mouse oocytes from secondary preantral follicles. Adv. Biosci. Biotechnol. 3:57–74, 2012.

    Article  CAS  Google Scholar 

  62. Woodruff, T. K. Making eggs: is it now or later? Nat. Med. 14:1190–1191, 2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Woodruff, T. K., and L. D. Shea. The role of the extracellular matrix in ovarian follicle development. Reprod. Sci. 14:6–10, 2007.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Woodruff, T. K., and L. D. Shea. A new hypothesis regarding ovarian follicle development: ovarian rigidity as a regulator of selection and health. J. Assist. Reprod. Gen. 28:3–6, 2011.

    Article  Google Scholar 

  65. Wright, D. L., A. Eroglu, M. Toner, and T. L. Toth. Use of sugars in cryopreserving human oocytes. Reprod. Biomed. Online 9:179–186, 2004.

    Article  CAS  PubMed  Google Scholar 

  66. Xiao, S., J. Zhang, M. M. Romero, K. N. Smith, L. D. Shea, and T. K. Woodruff. In vitro follicle growth supports human oocyte meiotic maturation. Sci. Rep. 5:17323, 2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Xu, M., A. Banc, T. K. Woodruff, and L. D. Shea. Secondary follicle growth and oocyte maturation by culture in alginate hydrogel following cryopreservation of the ovary or individual follicles. Biotechnol. Bioeng. 103:378–386, 2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Xu, M., S. L. Barrett, E. West-Farrell, L. A. Kondapalli, S. E. Kiesewetter, L. D. Shea, and T. K. Woodruff. In vitro grown human ovarian follicles from cancer patients support oocyte growth. Hum. Reprod. 24:2531–2540, 2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Xu, M., A. T. Fazleabas, A. Shikanov, E. Jackson, S. L. Barrett, J. Hirshfeld-Cytron, S. E. Kiesewetter, L. D. Shea, and T. K. Woodruff. In vitro oocyte maturation and preantral follicle culture from the luteal-phase baboon ovary produce mature oocytes. Biol. Reprod. 84:689–697, 2011.

    Article  CAS  PubMed  Google Scholar 

  70. Xu, M., E. R. West-Farrell, R. L. Stouffer, L. D. Shea, T. K. Woodruff, and M. B. Zelinski. Encapsulated three-dimensional culture supports development of nonhuman primate secondary follicles. Biol. Reprod. 81:587–594, 2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Xu, J., M. Xu, M. P. Bernuci, T. E. Fisher, L. D. Shea, T. K. Woodruff, M. B. Zelinski, and R. L. Stouffer. Primate follicular development and oocyte maturation in vitro. Adv. Exp. Med. Biol. 761:43–67, 2013.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Zeilmaker, G. H., A. T. Alberda, I. van Gent, C. M. Rijkmans, and A. C. Drogendijk. Two pregnancies following transfer of intact frozen-thawed embryos. Fertil. Steril. 42:293–296, 1984.

    Article  CAS  PubMed  Google Scholar 

  73. Zhang, M., Y. Q. Su, K. Sugiura, G. Xia, and J. J. Eppig. Granulosa cell ligand NPPC and its receptor NPR2 maintain meiotic arrest in mouse oocytes. Science 330:366–369, 2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Zhang, W., G. Yang, A. Zhang, L. X. Xu, and X. He. Preferential vitrification of water in small alginate microcapsules significantly augments cell cryopreservation by vitrification. Biomed. Microdevices 12:89–96, 2010.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was partially supported by grants from NIH (R01EB012108 and R01EB023632).

Conflict of Interest

The author declares no conflicts of interest.

Ethical Standards

No human studies were carried out by the authors for this review article. No animal studies were carried out by the authors for this review article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoming He.

Additional information

Associate Editor Christiani Amorim oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, X. Microfluidic Encapsulation of Ovarian Follicles for 3D Culture. Ann Biomed Eng 45, 1676–1684 (2017). https://doi.org/10.1007/s10439-017-1823-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-017-1823-7

Keywords

Navigation