Advertisement

Annals of Biomedical Engineering

, Volume 45, Issue 6, pp 1449–1461 | Cite as

Hemodynamic Characterization of Peripheral Arterio-venous Malformations

  • Sabrina Frey
  • A. Haine
  • R. Kammer
  • H. von Tengg-Kobligk
  • D. Obrist
  • I. Baumgartner
Article

Abstract

Peripheral arterio-venous malformations (pAVMs) are congenital vascular anomalies that require treatment, due to their severe clinical consequences. The complexity of lesions often leads to misdiagnosis and ill-planned treatments. To improve disease management, we developed a computational model to quantify the hemodynamic effects of key angioarchitectural features of pAVMs. Hemodynamic results were used to predict the transport of contrast agent (CA), which allowed us to compare our findings to digital subtraction angiography (DSA) recordings of patients. The model is based on typical pAVM morphologies and a generic vessel network that represents realistic vascular feeding and draining components related to lesions. A lumped-parameter description of the vessel network was employed to compute blood pressure and flow rates. CA-transport was determined by coupling the model to a 1D advection–diffusion equation. Results show that the extent of hemodynamic effects of pAVMs, such as arterial steal and venous hypertension, strongly depends on the lesion type and its vascular architecture. Dimensions of shunting vessels strongly influence hemodynamic parameters. Our results underline the importance of the dynamics of CA-transport in diagnostic DSA images. In this context, we identified a set of temporal CA-transport parameters, which are indicative of the presence and specific morphology of pAVMs.

Keywords

Lumped parameter model Blood flow modelling Contrast agent transport 1D advection–diffusion Yakes AVM classification Vascular malformations 

Abbreviations

AVM

Arterio-venous malformation

cAVM

Cerebral arterio-venous malformation

pAVM

Peripheral arterio-venous malformation

MR

Magnetic resonance

DSA

Digital subtraction angiography

CA

Contrast agent

LPM

Lumped parameter model

ATA

Anterior tibial artery

PTA

Posterior tibial artery

FbA

Fibular artery

MDA

Medial and dorsal arteries in the foot

DA

Digital arteries in the foot

DV

Digital veins in the foot

MDV

Medial and dorsal veins in the foot

PTV

Posterior tibial vein

ATV

Anterior tibial vein

FbV

Fibular vein

GSV

Great saphenous vein

SSV

Small saphenous vein

CO

Cardiac output

Notes

Conflict of interest

None.

Supplementary material

10439_2017_1821_MOESM1_ESM.eps (1.1 mb)
Supplementary material 1 (EPS 1141 kb)
10439_2017_1821_MOESM2_ESM.eps (1 mb)
Supplementary material 2 (EPS 1037 kb)
10439_2017_1821_MOESM3_ESM.eps (1.1 mb)
Supplementary material 3 (EPS 1106 kb)

References

  1. 1.
    Agur, A. M. R., and A. F. Dalley. Grant’s Atlas of Anatomy. Baltimore: Lippincott Williams & Wilkins, 2009, 884 pp.Google Scholar
  2. 2.
    Al-Adnani, M., S. Williams, D. Rampling, M. Ashworth, M. Malone, and N. J. Sebire. Histopathological reporting of paediatric cutaneous vascular anomalies in relation to proposed multidisciplinary classification system. J. Clin. Pathol. 59:1278–1282, 2006.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Bérczi, V., A. Á. Molnár, A. Apor, V. Kovács, C. Ruzics, C. Várallyay, K. Hüttl, E. Monos, and G. L. Nádasy. Non-invasive assessment of human large vein diameter, capacity, distensibility and ellipticity in situ: dependence on anatomical location, age, body position and pressure. Eur. J. Appl. Physiol. 95:283–289, 2005.CrossRefPubMedGoogle Scholar
  4. 4.
    Brouillard, P., and M. Vikkula. Vascular malformations: localized defects in vascular morphogenesis. Clin. Genet. 63:340–351, 2003.CrossRefPubMedGoogle Scholar
  5. 5.
    Chen, Y. G., P. A. Cook, M. A. McClinton, R. A. Espinosa, and E. F. Wilgis. Microarterial anatomy of the lesser toe proximal interphalangeal joints. J. Hand Surg. 23:256–260, 1998.CrossRefGoogle Scholar
  6. 6.
    Chung, T. J. Computational Fluid Dynamics. London: Cambridge University Press, 2014, 1058 pp.Google Scholar
  7. 7.
    Crank, J., and P. Nicolson. A practical method for numerical evaluation of solutions of partial differential equations of the heat-conduction type. Math. Proc. Camb. Philos. Soc. 43:50–67, 1947.CrossRefGoogle Scholar
  8. 8.
    Dinenno, F. A., P. P. Jones, D. R. Seals, and H. Tanaka. Limb blood flow and vascular conductance are reduced with age in healthy humans: relation to elevations in sympathetic nerve activity and declines in oxygen demand. Circulation 100:164–170, 1999.CrossRefPubMedGoogle Scholar
  9. 9.
    Erbertseder, K., J. Reichold, B. Flemisch, P. Jenny, and R. Helmig. A coupled discrete/continuum model for describing cancer-therapeutic transport in the lung. PLoS ONE 7:e31966, 2012.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Essig, M., R. Engenhart, M. V. Knopp, M. Bock, J. Scharf, J. Debus, F. Wenz, H. Hawighorst, L. R. Schad, and G. van Kaick. Cerebral arteriovenous malformations: improved nidus demarcation by means of dynamic tagging MR-angiography. Magn. Reson. Imaging 14:227–233, 1996.CrossRefPubMedGoogle Scholar
  11. 11.
    Formaggia, L., A. Quarteroni, and A. Veneziani. Cardiovascular Mathematics: Modeling and Simulation of the Circulatory System. Springer, Milan, 2010, 528 pp.Google Scholar
  12. 12.
    Fuster, V., R. Walsh, and R. Harrington. Hurst’s the Heart, 13th edn, Vol. 1. New York: McGraw-Hill Education/Medical, 2011, 2500 pp.Google Scholar
  13. 13.
    Gamble, G., J. Zorn, G. Sanders, S. MacMahon, and N. Sharpe. Estimation of arterial stiffness, compliance, and distensibility from M-mode ultrasound measurements of the common carotid artery. Stroke J. Cereb. Circ. 25:11–16, 1994.CrossRefGoogle Scholar
  14. 14.
    Gao, E., W. L. Young, G. J. Hademenos, T. F. Massoud, R. R. Sciacca, Q. Ma, S. Joshi, H. Mast, J. P. Mohr, S. Vulliemoz, and J. Pile-Spellman. Theoretical modelling of arteriovenous malformation rupture risk: a feasibility and validation study. Med. Eng. Phys. 20:489–501, 1998.CrossRefPubMedGoogle Scholar
  15. 15.
    Goldberger, A. L., L. A. Amaral, L. Glass, J. M. Hausdorff, P. C. Ivanov, R. G. Mark, J. E. Mietus, G. B. Moody, C. K. Peng, and H. E. Stanley. PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation 101:E215–E220, 2000.CrossRefPubMedGoogle Scholar
  16. 16.
    Golovin, S. V., A. K. Khe, and K. A. Gadylshina. Hydraulic model of cerebral arteriovenous malformations. J. Fluid Mech. 797:110–129, 2016.CrossRefGoogle Scholar
  17. 17.
    Golub, G. H. Matrix Computations. Baltimore: Johns Hopkins University Press, 2013, 756 pp.Google Scholar
  18. 18.
    Griessenauer, C. J., P. Dolati, A. Thomas, and C. S. Ogilvy. Arteriovenous malformations: how we changed our practice. In: Controversies in Vascular Neurosurgery, edited by E. Veznedaroglu. Cham: Springer, 2016, pp. 157–164. doi: 10.1007/978-3-319-27315-0_14.CrossRefGoogle Scholar
  19. 19.
    Hademenos, G. J., and T. F. Massoud. Risk of intracranial arteriovenous malformation rupture due to venous drainage impairment. A theoretical analysis. Stroke J. Cereb. Circ. 27:1072–1083, 1996.CrossRefGoogle Scholar
  20. 20.
    Hademenos, G. J., T. F. Massoud, and F. Viñuela. A biomathematical model of intracranial arteriovenous malformations based on electrical network analysis: theory and hemodynamics. Neurosurgery 38:1005–1014, 1996; (discussion 1014–1015).CrossRefPubMedGoogle Scholar
  21. 21.
    Hao, Q., and B. B. Lieber. Dispersive transport of angiographic contrast during antegrade arterial injection. Cardiovasc. Eng. Technol. 3:171–178, 2012.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Holland, C. K., J. M. Brown, L. M. Scoutt, and K. J. Taylor. Lower extremity volumetric arterial blood flow in normal subjects. Ultrasound Med. Biol. 24:1079–1086, 1998.CrossRefPubMedGoogle Scholar
  23. 23.
    Hussain, S. T., R. E. Smith, R. F. Wood, and M. Bland. Observer variability in volumetric blood flow measurements in leg arteries using duplex ultrasound. Ultrasound Med. Biol. 22:287–291, 1996.CrossRefPubMedGoogle Scholar
  24. 24.
    Kalayci, T. O., F. Sonmezgoz, M. Apaydin, M. F. Inci, A. F. Sarp, B. Birlik, M. E. Uluç, O. Oyar, and M. Kestelli. Venous flow volume measured by duplex ultrasound can be used as an indicator of impaired tissue perfusion in patients with peripheral arterial disease. Med. Ultrason. 17:482–486, 2015.PubMedGoogle Scholar
  25. 25.
    Madani, H., J. Farrant, N. Chhaya, I. Anwar, H. Marmery, A. Platts, and B. Holloway. Peripheral limb vascular malformations: an update of appropriate imaging and treatment options of a challenging condition. Br. J. Radiol. 88:20140406, 2015.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Orlowski, P., P. Summers, J. A. Noble, J. Byrne, and Y. Ventikos. Computational modelling for the embolization of brain arteriovenous malformations. Med. Eng. Phys. 34:873–881, 2012.CrossRefPubMedGoogle Scholar
  27. 27.
    Ottesen, J. T., M. S. Olufsen, and J. K. Larsen. Applied Mathematical Models in Human Physiology. Philadelphia: Society for Industrial and Applied Mathematics, 2004, 184 pp.Google Scholar
  28. 28.
    Pollak, Y., B. T. Katzen, and W. Pollak. High-output congestive failure in a patient with pulmonary arteriovenous malformations. Cardiol. Rev. 10:188–192, 2002.CrossRefPubMedGoogle Scholar
  29. 29.
    Ricci, S., L. Moro, and R. Antonelli Incalzi. The foot venous system: anatomy, physiology and relevance to clinical practice. Dermatol. Surg. 40:225–233, 2014.CrossRefPubMedGoogle Scholar
  30. 30.
    Richter, G. T., and A. B. Friedman. Hemangiomas and vascular malformations: current theory and management. Int. J. Pediatr. 2012:e645678, 2012.CrossRefGoogle Scholar
  31. 31.
    Sabatier, M. J., L. Stoner, M. Reifenberger, and K. McCully. Doppler ultrasound assessment of posterior tibial artery size in humans. J. Clin. Ultrasound (JCU) 34:223–230, 2006.CrossRefGoogle Scholar
  32. 32.
    Saeed, M., M. Villarroel, A. T. Reisner, G. Clifford, L.-W. Lehman, G. Moody, T. Heldt, T. H. Kyaw, B. Moody, and R. G. Mark. Multiparameter intelligent monitoring in intensive care II (MIMIC-II): a public-access intensive care unit database. Crit. Care Med. 39:952–960, 2011.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Szpinda, M. An angiographic study of the anterior tibial artery in patients with aortoiliac occlusive disease. Folia Morphol. 65:126–131, 2006.Google Scholar
  34. 34.
    Tasnádi, G. Epidemiology and etiology of congenital vascular malformations. Semin. Vasc. Surg. 6:200–203, 1993.PubMedGoogle Scholar
  35. 35.
    Williamson, J. H. Low-storage Runge–Kutta schemes. J. Comput. Phys. 35:48–56, 1980.CrossRefGoogle Scholar
  36. 36.
    Yakes, W., and I. Baumgartner. Interventional treatment of arterio-venous malformations. Gefässchirurgie 19:325–330, 2014.CrossRefGoogle Scholar
  37. 37.
    Yakes, W. F. Endovascular management of high-flow arteriovenous malformations. Semin. Interv. Radiol. 21:49–58, 2004.CrossRefGoogle Scholar
  38. 38.
    Yakes, W. F., and A. M. Yakes. Classification of arteriovenous malformation and therapeutic implication. In: Hemangiomas and Vascular Malformations, edited by R. Mattassi, D. A. Loose, and M. Vaghi. Milan: Springer, 2015, pp. 263–276. doi: 10.1007/978-88-470-5673-2_33.Google Scholar

Copyright information

© Biomedical Engineering Society 2017

Authors and Affiliations

  1. 1.ARTORG Center for Biomedical Engineering ResearchUniversity of BernBernSwitzerland
  2. 2.Division of Angiology, Swiss Cardiovascular CenterUniversity of Bern, Bern University HospitalBernSwitzerland
  3. 3.Department of Diagnostic, Interventional and Pediatric RadiologyUniversity of Bern, Bern University HospitalBernSwitzerland

Personalised recommendations