Annals of Biomedical Engineering

, Volume 45, Issue 6, pp 1496–1510 | Cite as

A Dual-Mode Bioreactor System for Tissue Engineered Vascular Models

  • N. Bono
  • S. Meghezi
  • M. Soncini
  • M. Piola
  • D. Mantovani
  • Gianfranco Beniamino Fiore


In the past decades, vascular tissue engineering has made great strides towards bringing engineered vascular tissues to the clinics and, in parallel, obtaining in-lab tools for basic research. Herein, we propose the design of a novel dual-mode bioreactor, useful for the fabrication (construct mode) and in vitro stimulation (culture mode) of collagen-based tubular constructs. Collagen-based gels laden with smooth muscle cells (SMCs) were molded directly within the bioreactor culture chamber. Based on a systematic characterization of the bioreactor culture mode, constructs were subjected to 10% cyclic strain at 0.5 Hz for 5 days. The effects of cyclic stimulation on matrix re-arrangement and biomechanical/viscoelastic properties were examined and compared vs. statically cultured constructs. A thorough comparison of cell response in terms of cell localization and expression of contractile phenotypic markers was carried out as well. We found that cyclic stimulation promoted cell-driven collagen matrix bi-axial compaction, enhancing the mechanical strength of strained samples with respect to static controls. Moreover, cyclic strain positively affected SMC behavior: cells maintained their contractile phenotype and spread uniformly throughout the whole wall thickness. Conversely, static culture induced a noticeable polarization of cell distribution to the outer rim of the constructs and a sharp reduction in total cell density. Overall, coupling the use of a novel dual-mode bioreactor with engineered collagen-gel-based tubular constructs demonstrated to be an interesting technology to investigate the modulation of cell and tissue behavior under controlled mechanically conditioned in vitro maturation.


Vascular tissue engineering Bioreactor Cyclic strain Collagen Smooth muscle cells Mechanical properties 



NB was awarded of a Ph.D. Scholarship from the Italian Ministry of Education, completed with a mobility scholarship from the InterPolytechnic Doctoral School. This work was partially funded by the Natural Science and Engineering Research Council of Canada, the Canadian Institute for Health Research, the Heart and Stroke Foundation of Canada, the Canadian Foundation for Innovation, and the CHU de Quebec Research Center.

Supplementary material

10439_2017_1813_MOESM1_ESM.pdf (2.1 mb)
Supplementary material 1 (PDF 2174 kb)


  1. 1.
    Akhyari, P., P. W. Fedak, R. D. Weisel, T. Y. Lee, S. Verma, D. A. Mickle, and R. K. Li. Mechanical stretch regimen enhances the formation of bioengineered autologous cardiac muscle grafts. Circulation 106(12 Suppl 1):I137–I142, 2002.PubMedGoogle Scholar
  2. 2.
    ANSI/AAMI/ISO 7198:1998/2001. Cardiovascular implants—tubular vascular prostheses (2001).Google Scholar
  3. 3.
    Berglund, J. D., R. M. Nerem, and A. Sambanis. Incorporation of intact elastin scaffolds in tissue-engineered collagen-based vascular grafts. Tissue Eng. 10(9–10):1526–1535, 2004. doi: 10.1089/ten.2004.10.1526.CrossRefPubMedGoogle Scholar
  4. 4.
    Berglund, J. D., R. M. Nerem, and A. Sambanis. Viscoelastic testing methodologies for tissue engineered blood vessels. J. Biomech. Eng. 127(7):1176–1184, 2005.CrossRefPubMedGoogle Scholar
  5. 5.
    Bjork, J. W., and R. T. Tranquillo. Transmural flow bioreactor for vascular tissue engineering. Biotechnol. Bioeng. 104(6):1197–1206, 2009. doi: 10.1002/bit.22475.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Boccafoschi, F., M. Bosetti, C. Mosca, D. Mantovani, and M. Cannas. The role of shear stress on mechanically stimulated engineered vascular substitutes: influence on mechanical and biological properties. J. Tissue Eng. Regen. Med. 6(1):60–67, 2012. doi: 10.1002/term.398.CrossRefPubMedGoogle Scholar
  7. 7.
    Bono, N., D. Pezzoli, L. Levesque, C. Loy, G. Candiani, G. B. Fiore, and D. Mantovani. Unraveling the role of mechanical stimulation on smooth muscle cells: a comparative study between 2D and 3D models. Biotechnol. Bioeng. 2016. doi: 10.1002/bit.25979.PubMedGoogle Scholar
  8. 8.
    Brown, D. A., W. R. MacLellan, H. Laks, J. C. Dunn, B. M. Wu, and R. E. Beygui. Analysis of oxygen transport in a diffusion-limited model of engineered heart tissue. Biotechnol. Bioeng. 97(4):962–975, 2007. doi: 10.1002/bit.21295.CrossRefPubMedGoogle Scholar
  9. 9.
    Butler, D. L., S. A. Goldstein, and F. Guilak. Functional tissue engineering: the role of biomechanics. J. Biomech. Eng. 122(6):570–575, 2000.CrossRefPubMedGoogle Scholar
  10. 10.
    Cardinal, K. O., G. T. Bonnema, H. Hofer, J. K. Barton, and S. K. Williams. Tissue-engineered vascular grafts as in vitro blood vessel mimics for the evaluation of endothelialization of intravascular devices. Tissue Eng. 12(12):3431–3438, 2006. doi: 10.1089/ten.2006.12.3431.CrossRefPubMedGoogle Scholar
  11. 11.
    Chen, H. C., and Y. C. Hu. Bioreactors for tissue engineering. Biotechnol. Lett. 28(18):1415–1423, 2006. doi: 10.1007/s10529-006-9111-x.CrossRefPubMedGoogle Scholar
  12. 12.
    D’ Amore, A., J. S. Soares, J. A. Stella, W. Zhang, N. J. Amoroso, J. E. Mayer, Jr., W. R. Wagner, and M. S. Sacks. Large strain stimulation promotes extracellular matrix production and stiffness in an elastomeric scaffold model. J. Mech. Behav. Biomed. Mater. 62:619–635, 2016. doi: 10.1016/j.jmbbm.2016.05.005.CrossRefGoogle Scholar
  13. 13.
    Dahl, S. L., J. Koh, V. Prabhakar, and L. E. Niklason. Decellularized native and engineered arterial scaffolds for transplantation. Cell Transpl. 12(6):659–666, 2003.CrossRefGoogle Scholar
  14. 14.
    Dahl, S. L., C. Rhim, Y. C. Song, and L. E. Niklason. Mechanical properties and compositions of tissue engineered and native arteries. Ann. Biomed. Eng. 35(3):348–355, 2007. doi: 10.1007/s10439-006-9226-1.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Diebolt, M., L. Germain, F. A. Auger, and R. Andriantsitohaina. Mechanism of potentiation by polyphenols of contraction in human vein-engineered media. Am. J. Physiol. Heart Circ. Physiol. 288(6):H2918–H2924, 2005. doi: 10.1152/ajpheart.01194.2004.CrossRefPubMedGoogle Scholar
  16. 16.
    Engelmayr, Jr, G. C., D. K. Hildebrand, F. W. Sutherland, J. E. Mayer, Jr, and M. S. Sacks. A novel bioreactor for the dynamic flexural stimulation of tissue engineered heart valve biomaterials. Biomaterials 24(14):2523–2532, 2003.CrossRefPubMedGoogle Scholar
  17. 17.
    Engelmayr, Jr, G. C., E. Rabkin, F. W. Sutherland, F. J. Schoen, J. E. Mayer, Jr, and M. S. Sacks. The independent role of cyclic flexure in the early in vitro development of an engineered heart valve tissue. Biomaterials 26(2):175–187, 2005. doi: 10.1016/j.biomaterials.2004.02.035.CrossRefPubMedGoogle Scholar
  18. 18.
    Engelmayr, Jr, G. C., L. Soletti, S. C. Vigmostad, S. G. Budilarto, W. J. Federspiel, K. B. Chandran, D. A. Vorp, and M. S. Sacks. A novel flex-stretch-flow bioreactor for the study of engineered heart valve tissue mechanobiology. Ann. Biomed. Eng. 36(5):700–712, 2008. doi: 10.1007/s10439-008-9447-6.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Fernandez, C. E., R. W. Yen, S. M. Perez, H. W. Bedell, T. J. Povsic, W. M. Reichert, and G. A. Truskey. Human vascular microphysiological system for in vitro drug screening. Scientific reports 6:21579, 2016. doi: 10.1038/srep21579.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Fung, Y. C., and S. Q. Liu. Determination of the mechanical properties of the different layers of blood vessels in vivo. Proc. Natl Acad. Sci. USA 92(6):2169–2173, 1995.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Gauvin, R., T. Ahsan, D. Larouche, P. Levesque, J. Dube, F. A. Auger, R. M. Nerem, and L. Germain. A novel single-step self-assembly approach for the fabrication of tissue-engineered vascular constructs. Tissue Eng. Part A 16(5):1737–1747, 2010. doi: 10.1089/ten.TEA.2009.0313.CrossRefPubMedGoogle Scholar
  22. 22.
    Gauvin, R., M. Guillemette, T. Galbraith, J. M. Bourget, D. Larouche, H. Marcoux, D. Aube, C. Hayward, F. A. Auger, and L. Germain. Mechanical properties of tissue-engineered vascular constructs produced using arterial or venous cells. Tissue Eng. Part A 17(15–16):2049–2059, 2011. doi: 10.1089/ten.TEA.2010.0613.CrossRefPubMedGoogle Scholar
  23. 23.
    Gibbons, M. C., M. A. Foley, and K. O. Cardinal. Thinking inside the box: keeping tissue-engineered constructs in vitro for use as preclinical models. Tissue Eng. Part B Rev 19(1):14–30, 2013. doi: 10.1089/ten.TEB.2012.0305.CrossRefPubMedGoogle Scholar
  24. 24.
    Gui, L., M. J. Boyle, Y. M. Kamin, A. H. Huang, B. C. Starcher, C. A. Miller, M. J. Vishnevetsky, and L. E. Niklason. Construction of tissue-engineered small-diameter vascular grafts in fibrin scaffolds in 30 days. Tissue Eng. Part A 20(9–10):1499–1507, 2014. doi: 10.1089/ten.TEA.2013.0263.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Gwyther, T. A., J. Z. Hu, A. G. Christakis, J. K. Skorinko, S. M. Shaw, K. L. Billiar, and M. W. Rolle. Engineered vascular tissue fabricated from aggregated smooth muscle cells. Cells Tissues Organs 194(1):13–24, 2011. doi: 10.1159/000322554.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Hamza, L. H., Q. Dang, X. Lu, A. Mian, S. Molloi, and G. S. Kassab. Effect of passive myocardium on the compliance of porcine coronary arteries. Am. J. Physiol. Heart Circ. Physiol. 285(2):H653–H660, 2003. doi: 10.1152/ajpheart.00090.2003.CrossRefPubMedGoogle Scholar
  27. 27.
    Huang, A. H., Y. U. Lee, E. A. Calle, M. Boyle, B. C. Starcher, J. D. Humphrey, and L. E. Niklason. Design and use of a novel bioreactor for regeneration of biaxially stretched tissue-engineered vessels. Tissue Eng. Part C Methods 21(8):841–851, 2015. doi: 10.1089/ten.TEC.2014.0287.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Huang, A. H., and L. E. Niklason. Engineering of arteries in vitro. Cell. Mol. Life Sci. 71(11):2103–2118, 2014. doi: 10.1007/s00018-013-1546-3.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Isenberg, B. C., and R. T. Tranquillo. Long-term cyclic distention enhances the mechanical properties of collagen-based media-equivalents. Ann. Biomed. Eng. 31(8):937–949, 2003.CrossRefPubMedGoogle Scholar
  30. 30.
    Isenberg, B. C., C. Williams, and R. T. Tranquillo. Small-diameter artificial arteries engineered in vitro. Circ. Res. 98(1):25–35, 2006. doi: 10.1161/01.RES.0000196867.12470.84.CrossRefPubMedGoogle Scholar
  31. 31.
    Jin, G., G. H. Yang, and G. Kim. Tissue engineering bioreactor systems for applying physical and electrical stimulations to cells. J. Biomed. Mater. Res. Part B Appl. Biomater. 103(4):935–948, 2015. doi: 10.1002/jbm.b.33268.CrossRefPubMedGoogle Scholar
  32. 32.
    Kassab, G. S., and S. Molloi. Cross-sectional area and volume compliance of porcine left coronary arteries. Am. J. Physiol. Heart Circ. Physiol. 281(2):H623–H628, 2001.PubMedGoogle Scholar
  33. 33.
    Kim, B. S., J. Nikolovski, J. Bonadio, E. Smiley, and D. J. Mooney. Engineered smooth muscle tissues: regulating cell phenotype with the scaffold. Exp. Cell Res. 251(2):318–328, 1999. doi: 10.1006/excr.1999.4595.CrossRefPubMedGoogle Scholar
  34. 34.
    L’Heureux, N., S. Paquet, R. Labbe, L. Germain, and F. A. Auger. A completely biological tissue-engineered human blood vessel. FASEB J. 12(1):47–56, 1998.PubMedGoogle Scholar
  35. 35.
    L’Heureux, N., J. C. Stoclet, F. A. Auger, G. J. Lagaud, L. Germain, and R. Andriantsitohaina. A human tissue-engineered vascular media: a new model for pharmacological studies of contractile responses. FASEB J. 15(2):515–524, 2001. doi: 10.1096/fj.00-0283com.CrossRefPubMedGoogle Scholar
  36. 36.
    Martin, I., T. Smith, and D. Wendt. Bioreactor-based roadmap for the translation of tissue engineering strategies into clinical products. Trends Biotechnol. 27(9):495–502, 2009. doi: 10.1016/j.tibtech.2009.06.002.CrossRefPubMedGoogle Scholar
  37. 37.
    Martin, I., D. Wendt, and M. Heberer. The role of bioreactors in tissue engineering. Trends Biotechnol. 22(2):80–86, 2004. doi: 10.1016/j.tibtech.2003.12.001.CrossRefPubMedGoogle Scholar
  38. 38.
    Meghezi, S., F. Couet, P. Chevallier, and D. Mantovani. Effects of a pseudophysiological environment on the elastic and viscoelastic properties of collagen gels. Int. J. Biomater. 2012:319290, 2012. doi: 10.1155/2012/319290.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Meghezi, S., D. G. Seifu, N. Bono, L. Unsworth, K. Mequanint, and D. Mantovani. Engineering 3D cellularized collagen gels for vascular tissue regeneration. J. Vis. Exp. 100:e52812, 2015. doi: 10.3791/52812.Google Scholar
  40. 40.
    Mol, A., C. V. Bouten, G. Zund, C. I. Gunter, J. F. Visjager, M. I. Turina, F. P. Baaijens, and S. P. Hoerstrup. The relevance of large strains in functional tissue engineering of heart valves. Thorac. Cardiovasc. Surg 51(2):78–83, 2003. doi: 10.1055/s-2003-38993.CrossRefPubMedGoogle Scholar
  41. 41.
    Nieponice, A., L. Soletti, J. Guan, B. M. Deasy, J. Huard, W. R. Wagner, and D. A. Vorp. Development of a tissue-engineered vascular graft combining a biodegradable scaffold, muscle-derived stem cells and a rotational vacuum seeding technique. Biomaterials 29(7):825–833, 2008. doi: 10.1016/j.biomaterials.2007.10.044.CrossRefPubMedGoogle Scholar
  42. 42.
    Niklason, L. E., J. Gao, W. M. Abbott, K. K. Hirschi, S. Houser, R. Marini, and R. Langer. Functional arteries grown in vitro. Science 284(5413):489–493, 1999.CrossRefPubMedGoogle Scholar
  43. 43.
    Niu, G., E. Sapoznik, and S. Soker. Bioengineered blood vessels. Expert Opin. Biol. Ther. 14(4):403–410, 2014. doi: 10.1517/14712598.2014.880419.CrossRefPubMedGoogle Scholar
  44. 44.
    Patel, D. J., J. C. Greenfield, Jr, W. G. Austen, A. G. Morrow, and D. L. Fry. Pressure-flow relationships in the ascending aorta and femoral artery of man. J. Appl. Physiol. 20(3):459–463, 1965.PubMedGoogle Scholar
  45. 45.
    Piola, M., F. Prandi, N. Bono, M. Soncini, E. Penza, M. Agrifoglio, G. Polvani, M. Pesce, and G. B. Fiore. A compact and automated ex vivo vessel culture system for the pulsatile pressure conditioning of human saphenous veins. J. Tissue Eng. Regen. Med. 2013. doi: 10.1002/term.1798.PubMedGoogle Scholar
  46. 46.
    Piola, M., M. Ruiter, R. Vismara, V. Mastrullo, M. Agrifoglio, M. Zanobini, M. Pesce, M. Soncini, and G. B. Fiore. full mimicking of coronary hemodynamics for ex-vivo stimulation of human saphenous veins. Ann. Biomed. Eng. 2016. doi: 10.1007/s10439-016-1747-7.Google Scholar
  47. 47.
    Piola, M., M. Soncini, F. Prandi, G. Polvani, G. Beniamino Fiore, and M. Pesce. Tools and procedures for ex vivo vein arterialization, preconditioning and tissue engineering: a step forward to translation to combat the consequences of vascular graft remodeling. Recent Pat. Cardiovasc. Drug Discov. 7(3):186–195, 2012.CrossRefPubMedGoogle Scholar
  48. 48.
    Raimondi, M. T., F. Boschetti, L. Falcone, G. B. Fiore, A. Remuzzi, E. Marinoni, M. Marazzi, and R. Pietrabissa. Mechanobiology of engineered cartilage cultured under a quantified fluid-dynamic environment. Biomech. Model Mechanobiol. 1(1):69–82, 2002. doi: 10.1007/s10237-002-0007-y.CrossRefPubMedGoogle Scholar
  49. 49.
    Raimondi, M. T., M. Moretti, M. Cioffi, C. Giordano, F. Boschetti, K. Lagana, and R. Pietrabissa. The effect of hydrodynamic shear on 3D engineered chondrocyte systems subject to direct perfusion. Biorheology 43(3–4):215–222, 2006.PubMedGoogle Scholar
  50. 50.
    Rajan, N., J. Habermehl, M. F. Cote, C. J. Doillon, and D. Mantovani. Preparation of ready-to-use, storable and reconstituted type I collagen from rat tail tendon for tissue engineering applications. Nat. Protoc. 1(6):2753–2758, 2006. doi: 10.1038/nprot.2006.430.CrossRefPubMedGoogle Scholar
  51. 51.
    Seifu, D. G., A. Purnama, K. Mequanint, and D. Mantovani. Small-diameter vascular tissue engineering. Nat. Rev. Cardiol. 10(7):410–421, 2013. doi: 10.1038/nrcardio.2013.77.CrossRefPubMedGoogle Scholar
  52. 52.
    Seliktar, D., R. A. Black, R. P. Vito, and R. M. Nerem. Dynamic mechanical conditioning of collagen-gel blood vessel constructs induces remodeling in vitro. Ann. Biomed. Eng. 28(4):351–362, 2000.CrossRefPubMedGoogle Scholar
  53. 53.
    Seliktar, D., R. M. Nerem, and Z. S. Galis. The role of matrix metalloproteinase-2 in the remodeling of cell-seeded vascular constructs subjected to cyclic strain. Ann. Biomed. Eng. 29(11):923–934, 2001.CrossRefPubMedGoogle Scholar
  54. 54.
    Soares, J. S., and M. S. Sacks. A triphasic constrained mixture model of engineered tissue formation under in vitro dynamic mechanical conditioning. Biomech. Model Mechanobiol. 15(2):293–316, 2016. doi: 10.1007/s10237-015-0687-8.CrossRefPubMedGoogle Scholar
  55. 55.
    Solan, A., S. L. Dahl, and L. E. Niklason. Effects of mechanical stretch on collagen and cross-linking in engineered blood vessels. Cell Transplant. 18(8):915–921, 2009. doi: 10.3727/096368909X471161.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Stegemann, J. P., and R. M. Nerem. Altered response of vascular smooth muscle cells to exogenous biochemical stimulation in two- and three-dimensional culture. Exp. Cell Res. 283(2):146–155, 2003.CrossRefPubMedGoogle Scholar
  57. 57.
    Stekelenburg, M., M. C. Rutten, L. H. Snoeckx, and F. P. Baaijens. Dynamic straining combined with fibrin gel cell seeding improves strength of tissue-engineered small-diameter vascular grafts. Tissue Eng. Part A 15(5):1081–1089, 2009. doi: 10.1089/ten.tea.2008.0183.CrossRefPubMedGoogle Scholar
  58. 58.
    Syedain, Z., J. Reimer, M. Lahti, J. Berry, S. Johnson, and R. T. Tranquillo. Tissue engineering of acellular vascular grafts capable of somatic growth in young lambs. Nat. Commun. 7:12951, 2016. doi: 10.1038/ncomms12951.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Syedain, Z. H., L. A. Meier, J. W. Bjork, A. Lee, and R. T. Tranquillo. Implantable arterial grafts from human fibroblasts and fibrin using a multi-graft pulsed flow-stretch bioreactor with noninvasive strength monitoring. Biomaterials 32(3):714–722, 2011. doi: 10.1016/j.biomaterials.2010.09.019.CrossRefPubMedGoogle Scholar
  60. 60.
    Teebken, O. E., A. Bader, G. Steinhoff, and A. Haverich. Tissue engineering of vascular grafts: human cell seeding of decellularised porcine matrix. Eur. J. Vasc. Endovasc. Surg. 19(4):381–386, 2000. doi: 10.1053/ejvs.1999.1004.CrossRefPubMedGoogle Scholar
  61. 61.
    Truskey, G.A. Advancing cardiovascular tissue engineering. F1000Research 5, 2016. doi:10.12688/f1000research.8237.1.Google Scholar
  62. 62.
    Vismara, R., M. Soncini, G. Talo, L. Dainese, A. Guarino, A. Redaelli, and G. B. Fiore. A bioreactor with compliance monitoring for heart valve grafts. Ann. Biomed. Eng. 38(1):100–108, 2010. doi: 10.1007/s10439-009-9803-1.CrossRefPubMedGoogle Scholar
  63. 63.
    Weidenhamer, N. K., and R. T. Tranquillo. Influence of cyclic mechanical stretch and tissue constraints on cellular and collagen alignment in fibroblast-derived cell sheets. Tissue Eng. Part C Methods 19(5):386–395, 2013. doi: 10.1089/ten.TEC.2012.0423.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Biomedical Engineering Society 2017

Authors and Affiliations

  • N. Bono
    • 1
    • 2
  • S. Meghezi
    • 2
  • M. Soncini
    • 1
  • M. Piola
    • 1
  • D. Mantovani
    • 2
  • Gianfranco Beniamino Fiore
    • 1
  1. 1.μBS Lab, Dipartimento di Elettronica, Informazione e BioingegneriaPolitecnico di MilanoMilanItaly
  2. 2.Laboratory for Biomaterials and Bioengineering (CRC-I), Department of Min-Met-Materials & CHU de Québec Research CenterLaval University, Pavillon PouliotQuebec CityCanada

Personalised recommendations