Annals of Biomedical Engineering

, Volume 45, Issue 6, pp 1434–1448 | Cite as

Computational Parametric Studies Investigating the Global Hemodynamic Effects of Applied Apical Torsion for Cardiac Assist

  • Elaine Soohoo
  • Lewis K. Waldman
  • Dennis R. Trumble
Article

Abstract

Healthy hearts have an inherent twisting motion that is caused by large changes in muscle fiber orientation across the myocardial wall and is believed to help lower wall stress and increase cardiac output. It was demonstrated that applied apical torsion (AAT) of the heart could potentially treat congestive heart failure (CHF) by improving hemodynamic function. We report the results of parametric computational experiments where the effects of using a torsional ventricular assist device (tVAD) to treat CHF were examined using a patient-specific bi-ventricular computational model. We examined the effects on global hemodynamics as the device coverage area (CA) and applied rotation angle (ARA) were varied to determine ideal tVAD design parameters. When compared to a baseline, pretreatment CHF model, increases in ARA resulted in moderate to substantial increases in ejection fraction (EF), peak systolic pressures (PSP) and stroke work (SW) with concomitant decreases in end-systolic volumes (ESV). Increases in device CA resulted in increased hemodynamic function. The simulation representing the most aggressive level of cardiac assist yielded significant increases in left ventricular EF and SW, 49 and 72% respectively. Results with this more realistic computational model reinforce previous studies that have demonstrated the potential of AAT for cardiac assist.

Keywords

Congestive heart failure Ventricular assist device Computational modeling 

Abbreviations

AAT

Applied apical torsion

CHF

Congestive heart failure

CA

Coverage area

ARA

Applied rotation angle

HF

Heart failure

tVAD

Torsional ventricular assist device

EF

Ejection fraction

PSP

Peak systolic pressures

SW

Stroke work

ESV

End systolic volume

CO

Cardiac output

LV

Left ventricle

RV

Right ventricle

PV

Pressure–Volume

Notes

Acknowledgments

This work is supported by the Biomechanics in Regenerative Medicine (BIRM) Training Fellowship (NIBIB 5T32EB003392-10), Innovation Works (University Innovation Grant 2012W.CZ01551E-1), the National Institutes of Health (NIH 1R21EB017807-01A1), and the Bradford and Diane Smith Fellowship Award (Carnegie Mellon University).

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Arts, T., T. Delhaas, P. Bovendeerd, X. Verbeek, and F. Prinzen. Adaptation to mechanical load determines shape and properties of heart and circulation: the CircAdapt model. Am J Physiol Heart Circ Physiol 288(4):H1943–H1954, 2005.CrossRefPubMedGoogle Scholar
  2. 2.
    Ashley, E. A., Niebauer, J. Heart failure. In: Cardiology Explained, edited by T. Berthoud, H. James, R. O'Brien, and C. Harris. London: Remedica, 2004, p. 100.Google Scholar
  3. 3.
    Centers for Disease Control and Prevention. Heart Failure Fact Sheet. Atlanta: Centers for Disease Control and Prevention, 2013.Google Scholar
  4. 4.
    Chemla, Denis, Jean-Louis Hébert, Catherine Coirault, Karen Zamani, Isabelle Suard, Patrice Colin, and Yves Lecarpentier. Total arterial compliance estimated by stroke volume-to-aortic pulse pressure ratio in humans. Am J Physiol Heart Circ Physiol 274(2):H500–H505, 1998.Google Scholar
  5. 5.
    Dabestani, Ali, Gregory Mahan, Julius M. Gardin, Katsu Takenaka, Cora Burn, Alice Allfie, and Walter L. Henry. Evaluation of pulmonary artery pressure and resistance by pulsed doppler echocardiography. Am J Cardiol 59(6):662–668, 1987.CrossRefPubMedGoogle Scholar
  6. 6.
    Del Río, M., Liotta, D., Cervino, C.O. Vascular resistance and vascular impedance. In: A Practical Textbook of Congenital and Acquired Diseases of the Aorta, edited by D. Liotta. Buenos Aires: University of MoRón, 2003, pp. 52–53.Google Scholar
  7. 7.
    Doll, S., and K. Schweizerhof. On the development of volumetric strain energy functions. J Appl Mech 67(1):17–21, 1999.CrossRefGoogle Scholar
  8. 8.
    Finkelstein, S. M., J. N. Cohn, V. R. Collins, P. F. Carlyle, and W. J. Shelley. Vascular hemodynamic impedance in congestive heart failure. Am J Cardiol 55(4):423–427, 1985.CrossRefPubMedGoogle Scholar
  9. 9.
    Freis, E. D., H. W. Schnaper, R. L. Johnson, and G. E. Schreiner. Hemodynamic alterations in acute myocardial infarction. I. Cardiac output, mean arterial pressure, total peripheral resistance, central and total blood volumes, venous pressure and average circulation time 12. J Clin Invest 31(2):131–140, 1952.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Gamble, G., J. Zorn, G. Sanders, S. Macmahon, and N. Sharpe. Estimation of arterial stiffness, compliance, and distensibility from M-Mode ultrasound measurements of the common carotid artery. Stroke 25(1):11–16, 1994.CrossRefPubMedGoogle Scholar
  11. 11.
    Givertz, M. M. Ventricular assist devices: important information for patients and families. Circulation 124:e305–e311, 2011.CrossRefPubMedGoogle Scholar
  12. 12.
    Guccione, J. M., A. D. McCulloch, and L. K. Waldman. Passive material properties of intact ventricular myocardium determined from a cylindrical model. J Biomech Eng Trans 113:42–55, 1991.CrossRefGoogle Scholar
  13. 13.
    Holzapfel, G., and R. Ogden. Constitutive modeling of passive myocardium: a structurally based framework for material characterization. Philos Trans R Soc A 367:3445–3475, 2009.CrossRefGoogle Scholar
  14. 14.
    Kerckhoffs, R. C. P. Patient-specific modeling of the cardiovascular system: technology-driven personalized medicine. New York: Springer Science & Business Media, 2010.CrossRefGoogle Scholar
  15. 15.
    Kerckhoffs, R. C. P., M. Neal, Q. Gu, J. B. B. Bassingthwaighte, J. H. Omens, and A. D. McCulloch. Coupling of a three-dimensional finite element model of cardiac ventricular mechanics to lumped systems models of the systemic and pulmonic circulation. Ann Biomed Eng 35:1–18, 2007; (PMCID: 2872168).CrossRefPubMedGoogle Scholar
  16. 16.
    Krishnamurthy, A., C. T. Villongco, J. Chuang, L. R. Frank, V. Nigam, E. Belezzuoli, P. Stark, D. E. Krummen, S. Narayan, J. H. Omens, A. D. McCulloch, and R. C. P. Kerckhoffs. Patient- specific models of cardiac biomechanics. J Comput Physics 244:4–21, 2013. doi: 10.1016/j.jcp.2012.09.015; (PMCID: 3667962).CrossRefGoogle Scholar
  17. 17.
    Lehmann, E. D., K. D. Hopkins, A. Rawesh, R. C. Joseph, K. Kongola, S. W. Coppack, and R. G. Gosling. Relation between number of cardiovascular risk factors/events and noninvasive doppler ultrasound assessments of aortic compliance. Hypertension 32(3):565–569, 1998.CrossRefPubMedGoogle Scholar
  18. 18.
    Liu, Z. R., C. T. Ting, S. X. Zhu, and F. C. Yin. Aortic compliance in human hypertension. Hypertension 14(2):129–136, 1989.CrossRefPubMedGoogle Scholar
  19. 19.
    London, G. M., M. E. Safar, A. C. Simon, J. M. Alexandre, J. A. Levenson, and Y. A. Weiss. Total effective compliance, cardiac output and fluid volumes in essential hypertension. Circulation 57(5):995–1000, 1978.CrossRefPubMedGoogle Scholar
  20. 20.
    Murgo, J. P., N. Westerhof, J. P. Giolma, and S. A. Altobelli. Effects of exercise on aortic input impedance and pressure wave forms in normal humans. Circ Res 48(3):334–343, 1981.CrossRefPubMedGoogle Scholar
  21. 21.
    Normal Hemodynamic Parameters and Laboratory Values. Irvine: Edwards Lifesciences LLC, 2009.Google Scholar
  22. 22.
    O’rourke, M. F., J. A. Staessen, C. Vlachopoulos, D. Duprez, and G. E. E. Plante. Clinical applications of arterial stiffness: definitions and reference values. Am J Hypertens 15:426–444, 2002.CrossRefPubMedGoogle Scholar
  23. 23.
    Roche, E.T., M.A. Horvath, Alazmani, A, et al. Design and fabrication of a soft robotic direct cardiac compression device. In: ASME. International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Volume 5A: 39th Mechanisms and Robotics Conference, V05AT08A042, 2015. doi: 10.1115/DETC2015-47355.
  24. 24.
    Soohoo, E., H. Ma, A. Alcasid, and D. R. Trumble. Torsional ventricular assist device (tVAD): design considerations and prototype development. J Med Dev 2016. doi: 10.1115/1.4033117.Google Scholar
  25. 25.
    Tanaka, H., F. A. Dinenno, K. D. Monahan, C. M. Clevenger, C. A. Desouza, and D. R. Seals. Aging, habitual exercise, and dynamic arterial compliance. Circulation 102(11):1270–1275, 2000.CrossRefPubMedGoogle Scholar
  26. 26.
    Texas Heart Institute. Heart Assist Devices—Texas Heart Institute. Houston: Texas Heart Institute, 2016.Google Scholar
  27. 27.
    Mayo Clinic Staff. Heart Failure. Treatments and Drugs. Mayo Clinic, 2016.Google Scholar
  28. 28.
    Trumble, D. R., W. McGregor, R. C. P. Kerckhoffs, and L. K. Waldman. Cardiac assist with a twist: apical torsion as a means to improve heart function. J Biomech Eng 133:101003, 2011. doi: 10.1115/1.4005169.CrossRefPubMedGoogle Scholar
  29. 29.
    Usyk, T. P., R. Mazhari, and A. D. McCulloch. Effect of laminar orthotropic myofiber architecture on regional stress and strain in the canine left ventricle. J Elast 61:143–164, 2000.CrossRefGoogle Scholar
  30. 30.
    Walker, J. C., M. B. Ratcliffe, P. Zhang, A. W. Wallace, B. Fata, E. W. Hsu, D. Saloner, and J. M. Guccione. MRI-based finite-element analysis of left ventricular aneurysm. Am J Physiol Heart Circ Physiol 289:H692–H700, 2005.CrossRefPubMedGoogle Scholar

Copyright information

© Biomedical Engineering Society 2017

Authors and Affiliations

  1. 1.Scott Hall 4N003Carnegie Mellon UniversityPittsburghUSA
  2. 2.Insilicomed, Inc.La JollaUSA
  3. 3.Scott Hall 4N115Carnegie Mellon UniversityPittsburghUSA

Personalised recommendations