Annals of Biomedical Engineering

, Volume 45, Issue 6, pp 1475–1486 | Cite as

Continuous-Flow Left Ventricular Assist Device Support Improves Myocardial Supply:Demand in Chronic Heart Failure

  • Kevin G. Soucy
  • Carlo R. Bartoli
  • Dustin Phillips
  • Guruprasad A. Giridharan
  • Michael A. Sobieski
  • William B. Wead
  • Robert D. Dowling
  • Zhongjun J. Wu
  • Sumanth D. Prabhu
  • Mark S. Slaughter
  • Steven C. Koenig
Article

Abstract

Continuous-flow left ventricular assist devices (CF LVADs) are rotary blood pumps that improve mean blood flow, but with potential limitations of non-physiological ventricular volume unloading and diminished vascular pulsatility. In this study, we tested the hypothesis that left ventricular unloading with increasing CF LVAD flow increases myocardial flow normalized to left ventricular work. Healthy (n = 8) and chronic ischemic heart failure (IHF, n = 7) calves were implanted with CF LVADs. Acute hemodynamics and regional myocardial blood flow were measured during baseline (LVAD off, clamped), partial (2–4 L/min) and full (>4 L/min) LVAD support. IHF calves demonstrated greater reduction of cardiac energy demand with increasing LVAD support compared to healthy calves, as calculated by rate-pressure product. Coronary artery flows (p < 0.05) and myocardial blood flow (left ventricle (LV) epicardium and myocardium, p < 0.05) decreased with increasing LVAD support in normal calves. In the IHF model, blood flow to the septum, LV, LV epicardium, and LV myocardium increased significantly with increasing LVAD support when normalized to cardiac energy demand (p < 0.05). In conclusion, myocardial blood flow relative to cardiac demand significantly increased in IHF calves, thereby demonstrating that CF LVAD unloading effectively improves cardiac supply and demand ratio in the setting of ischemic heart failure.

Keywords

Mechanical circulatory support device Coronary circulation Cardiac tissue perfusion Regional blood flow Rate-pressure product 

Notes

Acknowledgments

The authors thank the following individuals for their support of this study: Karen Lott, Laura Lott, Cary Woolard, and Leslie Sherwood, DVM. This study was completed, in part, in support of the doctoral thesis and dissertation of C.R. Bartoli, MD, PhD entitled Partial vs. Full Support of the Heart with a Continuous-Flow Left Ventricular Assist Device: Implications for Myocardial Recovery. Funding for this project was provided, in part, by Roger M. Prizant Research Trust Fund, University of Louisville Clinical Translational Science Pilot Grant Program, and University of Louisville Cardiac Implant Science Endowment. Dr. Slaughter and Dr. Koenig have received funding unrelated to this study from industry sponsors for training and pre-clinical testing (HeartWare, Miami Lakes FL; St. Jude Medical, Minneapolis MN; Thoratec, Pleasanton CA). The authors have no other conflicts of interest to disclose. The left ventricular assist devices were provided by HeartWare (Miami Lakes, FL) and Thoratec (Pleasanton, CA) under material transfer agreements (MTA).

References

  1. 1.
    Ando, M., Y. Takewa, T. Nishimura, K. Yamazaki, S. Kyo, M. Ono, T. Tsukiya, T. Mizuno, Y. Taenaka, and E. Tatsumi. A novel counterpulsation mode of rotary left ventricular assist devices can enhance myocardial perfusion. J. Artif. Organs. 14:185–191, 2011.CrossRefPubMedGoogle Scholar
  2. 2.
    Ando, M., Y. Takewa, T. Nishimura, K. Yamazaki, S. Kyo, M. Ono, T. Tsukiya, T. Mizuno, Y. Taenaka, and E. Tatsumi. Coronary vascular resistance increases under full bypass support of centrifugal pumps–relation between myocardial perfusion and ventricular workload during pump support. Artif. Organs. 36:105–110, 2012.CrossRefPubMedGoogle Scholar
  3. 3.
    Bartoli, C. R., G. A. Giridharan, K. N. Litwak, M. Sobieski, S. D. Prabhu, M. S. Slaughter, and S. C. Koenig. Hemodynamic responses to continuous versus pulsatile mechanical unloading of the failing left ventricle. Asaio. J. 56:410–416, 2010.CrossRefPubMedGoogle Scholar
  4. 4.
    Bartoli, C. R., L. C. Sherwood, G. A. Giridharan, M. S. Slaughter, W. B. Wead, S. D. Prabhu, and S. C. Koenig. Bovine model of chronic ischemic cardiomyopathy: implications for ventricular assist device research. Artif Organs 37:E202–E214, 2013.CrossRefPubMedGoogle Scholar
  5. 5.
    Bartoli, C. R., W. B. Wead, G. A. Giridharan, S. D. Prabhu, S. C. Koenig, and R. D. Dowling. Mechanism of myocardial ischemia with an anomalous left coronary artery from the right sinus of Valsalva. J. Thorac. Cardiovasc. Surg. 144:402–408, 2012.CrossRefPubMedGoogle Scholar
  6. 6.
    Carabello, B. A. Understanding coronary blood flow: the wave of the future. Circulation 113:1721–1722, 2006.CrossRefPubMedGoogle Scholar
  7. 7.
    Chareonthaitawee, P., P. A. Kaufmann, O. Rimoldi, and P. G. Camici. Heterogeneity of resting and hyperemic myocardial blood flow in healthy humans. Cardiovasc. Res. 50:151–161, 2001.CrossRefPubMedGoogle Scholar
  8. 8.
    Czernin, J., P. Muller, S. Chan, R. C. Brunken, G. Porenta, J. Krivokapich, K. Chen, A. Chan, M. E. Phelps, and H. R. Schelbert. Influence of age and hemodynamics on myocardial blood flow and flow reserve. Circulation 88:62–69, 1993.CrossRefPubMedGoogle Scholar
  9. 9.
    Giridharan, G. A., S. C. Koenig, K. G. Soucy, Y. Choi, T. Pirbodaghi, C. R. Bartoli, G. Monreal, M. A. Sobieski, E. Schumer, A. Cheng, and M. S. Slaughter. Hemodynamic changes and retrograde flow in LVAD failure. ASAIO J 61:282–291, 2015.CrossRefPubMedGoogle Scholar
  10. 10.
    Giridharan, G. A., S. C. Koenig, K. G. Soucy, Y. Choi, T. Pirbodaghi, C. R. Bartoli, G. Monreal, M. A. Sobieski, E. Schumer, A. Cheng, and M. S. Slaughter. Left ventricular volume unloading with axial and centrifugal rotary blood pumps. ASAIO J. 61:292–300, 2015.CrossRefPubMedGoogle Scholar
  11. 11.
    John, R., F. Kamdar, K. Liao, M. Colvin-Adams, A. Boyle, and L. Joyce. Improved survival and decreasing incidence of adverse events with the HeartMate II left ventricular assist device as bridge-to-transplant therapy. Ann. Thorac. Surg. 86:1227–1234; discussion 1234–1225, 2008.Google Scholar
  12. 12.
    Kirklin, J. K., D. C. Naftel, F. D. Pagani, R. L. Kormos, L. W. Stevenson, E. D. Blume, S. L. Myers, M. A. Miller, J. T. Baldwin, and J. B. Young. Seventh INTERMACS annual report: 15,000 patients and counting. J. Heart Lung Transpl. 34:1495–1504, 2015.CrossRefGoogle Scholar
  13. 13.
    Lund, G. K., N. Watzinger, M. Saeed, G. P. Reddy, M. Yang, P. A. Araoz, D. Curatola, M. Bedigian, and C. B. Higgins. Chronic heart failure: global left ventricular perfusion and coronary flow reserve with velocity-encoded cine MR imaging: initial results. Radiology 227:209–215, 2003.CrossRefPubMedGoogle Scholar
  14. 14.
    Martina, J. R., B. E. Westerhof, N. de Jonge, J. van Goudoever, P. Westers, S. Chamuleau, D. van Dijk, B. F. Rodermans, B. A. de Mol, and J. R. Lahpor. Noninvasive arterial blood pressure waveforms in patients with continuous-flow left ventricular assist devices. ASAIO J. 60:154–161, 2014.CrossRefPubMedGoogle Scholar
  15. 15.
    Monreal, G., L. C. Sherwood, M. A. Sobieski, G. A. Giridharan, M. S. Slaughter, and S. C. Koenig. Large animal models for left ventricular assist device research and development. ASAIO J. 60:2–8, 2014.CrossRefPubMedGoogle Scholar
  16. 16.
    Neishi, Y., T. Akasaka, M. Tsukiji, T. Kume, N. Wada, N. Watanabe, T. Kawamoto, S. Kaji, and K. Yoshida. Reduced coronary flow reserve in patients with congestive heart failure assessed by transthoracic Doppler echocardiography. J. Am. Soc. Echocardiogr. 18:15–19, 2005.CrossRefPubMedGoogle Scholar
  17. 17.
    Ootaki, Y., K. Kamohara, M. Akiyama, F. Zahr, M. W. Kopcak, Jr, R. Dessoffy, and K. Fukamachi. Phasic coronary blood flow pattern during a continuous flow left ventricular assist support. Eur. J. Cardiothorac. Surg. 28:711–716, 2005.CrossRefPubMedGoogle Scholar
  18. 18.
    Schroeder, M. J., B. Perreault, D. L. Ewert, and S. C. Koenig. HEART: an automated beat-to-beat cardiovascular analysis package using Matlab. Comput. Biol. Med. 34:371–388, 2004.CrossRefPubMedGoogle Scholar
  19. 19.
    Sherwood, L. C., M. A. Sobieski, S. C. Koenig, G. A. Giridharan, and M. S. Slaughter. Benefits of aggressive medical management in a bovine model of chronic ischemic heart failure. ASAIO J. 59:221–229, 2013.CrossRefPubMedGoogle Scholar
  20. 20.
    Slaughter, M. S. Long-term continuous flow left ventricular assist device support and end-organ function: prospects for destination therapy. J. Card. Surg. 25:490–494, 2010.CrossRefPubMedGoogle Scholar
  21. 21.
    Slaughter, M. S., A. L. Meyer, and E. J. Birks. Destination therapy with left ventricular assist devices: patient selection and outcomes. Curr. Opin. Cardiol. 26:232–236, 2011.CrossRefPubMedGoogle Scholar
  22. 22.
    Slaughter, M. S., F. D. Pagani, J. G. Rogers, L. W. Miller, B. Sun, S. D. Russell, R. C. Starling, L. Chen, A. J. Boyle, S. Chillcott, R. M. Adamson, M. S. Blood, M. T. Camacho, K. A. Idrissi, M. Petty, M. Sobieski, S. Wright, T. J. Myers, D. J. Farrar, and I. I. C. I. HeartMate. Clinical management of continuous-flow left ventricular assist devices in advanced heart failure. J. Heart Lung Transpl. 29:S1–39, 2010.CrossRefGoogle Scholar
  23. 23.
    Slaughter, M. S., K. G. Soucy, R. G. Matheny, B. C. Lewis, M. F. Hennick, Y. Choi, G. Monreal, M. A. Sobieski, G. A. Giridharan, and S. C. Koenig. Development of an extracellular matrix delivery system for effective intramyocardial injection in ischemic tissue. ASAIO J. 60:730–736, 2014.CrossRefPubMedGoogle Scholar
  24. 24.
    Soucy, K. G., G. A. Giridharan, Y. Choi, M. A. Sobieski, G. Monreal, A. Cheng, E. Schumer, M. S. Slaughter, and S. C. Koenig. Rotary pump speed modulation for generating pulsatile flow and phasic left ventricular volume unloading in a bovine model of chronic ischemic heart failure. J. Heart Lung Transpl. 34:122–131, 2015.CrossRefGoogle Scholar
  25. 25.
    Soucy, K. G., S. C. Koenig, G. A. Giridharan, M. A. Sobieski, and M. S. Slaughter. Rotary pumps and diminished pulsatility: do we need a pulse? ASAIO J. 59:355–366, 2013.CrossRefPubMedGoogle Scholar
  26. 26.
    Soucy, K. G., E. F. Smith, G. Monreal, G. Rokosh, B. B. Keller, F. Yuan, R. G. Matheny, A. M. Fallon, B. C. Lewis, L. C. Sherwood, M. A. Sobieski, G. A. Giridharan, S. C. Koenig, and M. S. Slaughter. Feasibility study of particulate extracellular matrix (P-ECM) and left ventricular assist device (HVAD) therapy in chronic ischemic heart failure bovine model. ASAIO J. 16:161–169, 2015.CrossRefGoogle Scholar
  27. 27.
    Tansley, P., M. Yacoub, O. Rimoldi, E. Birks, J. Hardy, M. Hipkin, C. Bowles, H. Kindler, D. Dutka, and P. G. Camici. Effect of left ventricular assist device combination therapy on myocardial blood flow in patients with end-stage dilated cardiomyopathy. J. Heart Lung Transpl. 23:1283–1289, 2004.CrossRefGoogle Scholar
  28. 28.
    Tsagalou, E. P., M. Anastasiou-Nana, E. Agapitos, A. Gika, S. G. Drakos, J. V. Terrovitis, A. Ntalianis, and J. N. Nanas. Depressed coronary flow reserve is associated with decreased myocardial capillary density in patients with heart failure due to idiopathic dilated cardiomyopathy. J. Am. Coll. Cardiol. 52:1391–1398, 2008.CrossRefPubMedGoogle Scholar
  29. 29.
    Tuzun, E., K. Eya, H. K. Chee, J. L. Conger, N. K. Bruno, O. H. Frazier, and K. A. Kadipasaoglu. Myocardial hemodynamics, physiology, and perfusion with an axial flow left ventricular assist device in the calf. ASAIO J. 50:47–53, 2004.CrossRefPubMedGoogle Scholar
  30. 30.
    Umeki, A., T. Nishimura, M. Ando, Y. Takewa, K. Yamazaki, S. Kyo, M. Ono, T. Tsukiya, T. Mizuno, Y. Taenaka, and E. Tatsumi. Change of coronary flow by continuous-flow left ventricular assist device with cardiac beat synchronizing system (native heart load control system) in acute ischemic heart failure model. Circ. J. 77:995–1000, 2013.CrossRefPubMedGoogle Scholar
  31. 31.
    Ventura, P. A., R. Alharethi, D. Budge, B. B. Reid, B. D. Horne, N. O. Mason, S. Stoker, W. T. Caine, B. Rasmusson, J. Doty, S. E. Clayson, and A. G. Kfoury. Differential impact on post-transplant outcomes between pulsatile- and continuous-flow left ventricular assist devices. Clin. Transpl. 25:E390–395, 2011.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2017

Authors and Affiliations

  • Kevin G. Soucy
    • 1
    • 2
  • Carlo R. Bartoli
    • 3
  • Dustin Phillips
    • 2
  • Guruprasad A. Giridharan
    • 2
  • Michael A. Sobieski
    • 1
  • William B. Wead
    • 4
  • Robert D. Dowling
    • 5
  • Zhongjun J. Wu
    • 1
  • Sumanth D. Prabhu
    • 6
  • Mark S. Slaughter
    • 1
    • 2
  • Steven C. Koenig
    • 1
    • 2
  1. 1.Department of Cardiovascular and Thoracic Surgery, Cardiovascular Innovation InstituteUniversity of LouisvilleLouisvilleUSA
  2. 2.Department of BioengineeringUniversity of LouisvilleLouisvilleUSA
  3. 3.Division of Cardiovascular Surgery, Department of SurgeryHospital of the University of PennsylvaniaPhiladelphiaUSA
  4. 4.Department of Physiology and Biophysics, School of MedicineUniversity of LouisvilleLouisvilleUSA
  5. 5.Dowling Consulting, PSCLouisvilleUSA
  6. 6.Division of Cardiovascular Disease and Comprehensive Cardiovascular CenterUniversity of Alabama at BirminghamBirminghamUSA

Personalised recommendations