Skip to main content
Log in

Continuous-Flow Left Ventricular Assist Device Support Improves Myocardial Supply:Demand in Chronic Heart Failure

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Continuous-flow left ventricular assist devices (CF LVADs) are rotary blood pumps that improve mean blood flow, but with potential limitations of non-physiological ventricular volume unloading and diminished vascular pulsatility. In this study, we tested the hypothesis that left ventricular unloading with increasing CF LVAD flow increases myocardial flow normalized to left ventricular work. Healthy (n = 8) and chronic ischemic heart failure (IHF, n = 7) calves were implanted with CF LVADs. Acute hemodynamics and regional myocardial blood flow were measured during baseline (LVAD off, clamped), partial (2–4 L/min) and full (>4 L/min) LVAD support. IHF calves demonstrated greater reduction of cardiac energy demand with increasing LVAD support compared to healthy calves, as calculated by rate-pressure product. Coronary artery flows (p < 0.05) and myocardial blood flow (left ventricle (LV) epicardium and myocardium, p < 0.05) decreased with increasing LVAD support in normal calves. In the IHF model, blood flow to the septum, LV, LV epicardium, and LV myocardium increased significantly with increasing LVAD support when normalized to cardiac energy demand (p < 0.05). In conclusion, myocardial blood flow relative to cardiac demand significantly increased in IHF calves, thereby demonstrating that CF LVAD unloading effectively improves cardiac supply and demand ratio in the setting of ischemic heart failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Ando, M., Y. Takewa, T. Nishimura, K. Yamazaki, S. Kyo, M. Ono, T. Tsukiya, T. Mizuno, Y. Taenaka, and E. Tatsumi. A novel counterpulsation mode of rotary left ventricular assist devices can enhance myocardial perfusion. J. Artif. Organs. 14:185–191, 2011.

    Article  PubMed  Google Scholar 

  2. Ando, M., Y. Takewa, T. Nishimura, K. Yamazaki, S. Kyo, M. Ono, T. Tsukiya, T. Mizuno, Y. Taenaka, and E. Tatsumi. Coronary vascular resistance increases under full bypass support of centrifugal pumps–relation between myocardial perfusion and ventricular workload during pump support. Artif. Organs. 36:105–110, 2012.

    Article  PubMed  Google Scholar 

  3. Bartoli, C. R., G. A. Giridharan, K. N. Litwak, M. Sobieski, S. D. Prabhu, M. S. Slaughter, and S. C. Koenig. Hemodynamic responses to continuous versus pulsatile mechanical unloading of the failing left ventricle. Asaio. J. 56:410–416, 2010.

    Article  PubMed  Google Scholar 

  4. Bartoli, C. R., L. C. Sherwood, G. A. Giridharan, M. S. Slaughter, W. B. Wead, S. D. Prabhu, and S. C. Koenig. Bovine model of chronic ischemic cardiomyopathy: implications for ventricular assist device research. Artif Organs 37:E202–E214, 2013.

    Article  PubMed  Google Scholar 

  5. Bartoli, C. R., W. B. Wead, G. A. Giridharan, S. D. Prabhu, S. C. Koenig, and R. D. Dowling. Mechanism of myocardial ischemia with an anomalous left coronary artery from the right sinus of Valsalva. J. Thorac. Cardiovasc. Surg. 144:402–408, 2012.

    Article  PubMed  Google Scholar 

  6. Carabello, B. A. Understanding coronary blood flow: the wave of the future. Circulation 113:1721–1722, 2006.

    Article  PubMed  Google Scholar 

  7. Chareonthaitawee, P., P. A. Kaufmann, O. Rimoldi, and P. G. Camici. Heterogeneity of resting and hyperemic myocardial blood flow in healthy humans. Cardiovasc. Res. 50:151–161, 2001.

    Article  CAS  PubMed  Google Scholar 

  8. Czernin, J., P. Muller, S. Chan, R. C. Brunken, G. Porenta, J. Krivokapich, K. Chen, A. Chan, M. E. Phelps, and H. R. Schelbert. Influence of age and hemodynamics on myocardial blood flow and flow reserve. Circulation 88:62–69, 1993.

    Article  CAS  PubMed  Google Scholar 

  9. Giridharan, G. A., S. C. Koenig, K. G. Soucy, Y. Choi, T. Pirbodaghi, C. R. Bartoli, G. Monreal, M. A. Sobieski, E. Schumer, A. Cheng, and M. S. Slaughter. Hemodynamic changes and retrograde flow in LVAD failure. ASAIO J 61:282–291, 2015.

    Article  PubMed  Google Scholar 

  10. Giridharan, G. A., S. C. Koenig, K. G. Soucy, Y. Choi, T. Pirbodaghi, C. R. Bartoli, G. Monreal, M. A. Sobieski, E. Schumer, A. Cheng, and M. S. Slaughter. Left ventricular volume unloading with axial and centrifugal rotary blood pumps. ASAIO J. 61:292–300, 2015.

    Article  PubMed  Google Scholar 

  11. John, R., F. Kamdar, K. Liao, M. Colvin-Adams, A. Boyle, and L. Joyce. Improved survival and decreasing incidence of adverse events with the HeartMate II left ventricular assist device as bridge-to-transplant therapy. Ann. Thorac. Surg. 86:1227–1234; discussion 1234–1225, 2008.

  12. Kirklin, J. K., D. C. Naftel, F. D. Pagani, R. L. Kormos, L. W. Stevenson, E. D. Blume, S. L. Myers, M. A. Miller, J. T. Baldwin, and J. B. Young. Seventh INTERMACS annual report: 15,000 patients and counting. J. Heart Lung Transpl. 34:1495–1504, 2015.

    Article  Google Scholar 

  13. Lund, G. K., N. Watzinger, M. Saeed, G. P. Reddy, M. Yang, P. A. Araoz, D. Curatola, M. Bedigian, and C. B. Higgins. Chronic heart failure: global left ventricular perfusion and coronary flow reserve with velocity-encoded cine MR imaging: initial results. Radiology 227:209–215, 2003.

    Article  PubMed  Google Scholar 

  14. Martina, J. R., B. E. Westerhof, N. de Jonge, J. van Goudoever, P. Westers, S. Chamuleau, D. van Dijk, B. F. Rodermans, B. A. de Mol, and J. R. Lahpor. Noninvasive arterial blood pressure waveforms in patients with continuous-flow left ventricular assist devices. ASAIO J. 60:154–161, 2014.

    Article  PubMed  Google Scholar 

  15. Monreal, G., L. C. Sherwood, M. A. Sobieski, G. A. Giridharan, M. S. Slaughter, and S. C. Koenig. Large animal models for left ventricular assist device research and development. ASAIO J. 60:2–8, 2014.

    Article  PubMed  Google Scholar 

  16. Neishi, Y., T. Akasaka, M. Tsukiji, T. Kume, N. Wada, N. Watanabe, T. Kawamoto, S. Kaji, and K. Yoshida. Reduced coronary flow reserve in patients with congestive heart failure assessed by transthoracic Doppler echocardiography. J. Am. Soc. Echocardiogr. 18:15–19, 2005.

    Article  PubMed  Google Scholar 

  17. Ootaki, Y., K. Kamohara, M. Akiyama, F. Zahr, M. W. Kopcak, Jr, R. Dessoffy, and K. Fukamachi. Phasic coronary blood flow pattern during a continuous flow left ventricular assist support. Eur. J. Cardiothorac. Surg. 28:711–716, 2005.

    Article  PubMed  Google Scholar 

  18. Schroeder, M. J., B. Perreault, D. L. Ewert, and S. C. Koenig. HEART: an automated beat-to-beat cardiovascular analysis package using Matlab. Comput. Biol. Med. 34:371–388, 2004.

    Article  PubMed  Google Scholar 

  19. Sherwood, L. C., M. A. Sobieski, S. C. Koenig, G. A. Giridharan, and M. S. Slaughter. Benefits of aggressive medical management in a bovine model of chronic ischemic heart failure. ASAIO J. 59:221–229, 2013.

    Article  PubMed  Google Scholar 

  20. Slaughter, M. S. Long-term continuous flow left ventricular assist device support and end-organ function: prospects for destination therapy. J. Card. Surg. 25:490–494, 2010.

    Article  PubMed  Google Scholar 

  21. Slaughter, M. S., A. L. Meyer, and E. J. Birks. Destination therapy with left ventricular assist devices: patient selection and outcomes. Curr. Opin. Cardiol. 26:232–236, 2011.

    Article  PubMed  Google Scholar 

  22. Slaughter, M. S., F. D. Pagani, J. G. Rogers, L. W. Miller, B. Sun, S. D. Russell, R. C. Starling, L. Chen, A. J. Boyle, S. Chillcott, R. M. Adamson, M. S. Blood, M. T. Camacho, K. A. Idrissi, M. Petty, M. Sobieski, S. Wright, T. J. Myers, D. J. Farrar, and I. I. C. I. HeartMate. Clinical management of continuous-flow left ventricular assist devices in advanced heart failure. J. Heart Lung Transpl. 29:S1–39, 2010.

    Article  Google Scholar 

  23. Slaughter, M. S., K. G. Soucy, R. G. Matheny, B. C. Lewis, M. F. Hennick, Y. Choi, G. Monreal, M. A. Sobieski, G. A. Giridharan, and S. C. Koenig. Development of an extracellular matrix delivery system for effective intramyocardial injection in ischemic tissue. ASAIO J. 60:730–736, 2014.

    Article  CAS  PubMed  Google Scholar 

  24. Soucy, K. G., G. A. Giridharan, Y. Choi, M. A. Sobieski, G. Monreal, A. Cheng, E. Schumer, M. S. Slaughter, and S. C. Koenig. Rotary pump speed modulation for generating pulsatile flow and phasic left ventricular volume unloading in a bovine model of chronic ischemic heart failure. J. Heart Lung Transpl. 34:122–131, 2015.

    Article  Google Scholar 

  25. Soucy, K. G., S. C. Koenig, G. A. Giridharan, M. A. Sobieski, and M. S. Slaughter. Rotary pumps and diminished pulsatility: do we need a pulse? ASAIO J. 59:355–366, 2013.

    Article  PubMed  Google Scholar 

  26. Soucy, K. G., E. F. Smith, G. Monreal, G. Rokosh, B. B. Keller, F. Yuan, R. G. Matheny, A. M. Fallon, B. C. Lewis, L. C. Sherwood, M. A. Sobieski, G. A. Giridharan, S. C. Koenig, and M. S. Slaughter. Feasibility study of particulate extracellular matrix (P-ECM) and left ventricular assist device (HVAD) therapy in chronic ischemic heart failure bovine model. ASAIO J. 16:161–169, 2015.

    Article  Google Scholar 

  27. Tansley, P., M. Yacoub, O. Rimoldi, E. Birks, J. Hardy, M. Hipkin, C. Bowles, H. Kindler, D. Dutka, and P. G. Camici. Effect of left ventricular assist device combination therapy on myocardial blood flow in patients with end-stage dilated cardiomyopathy. J. Heart Lung Transpl. 23:1283–1289, 2004.

    Article  Google Scholar 

  28. Tsagalou, E. P., M. Anastasiou-Nana, E. Agapitos, A. Gika, S. G. Drakos, J. V. Terrovitis, A. Ntalianis, and J. N. Nanas. Depressed coronary flow reserve is associated with decreased myocardial capillary density in patients with heart failure due to idiopathic dilated cardiomyopathy. J. Am. Coll. Cardiol. 52:1391–1398, 2008.

    Article  PubMed  Google Scholar 

  29. Tuzun, E., K. Eya, H. K. Chee, J. L. Conger, N. K. Bruno, O. H. Frazier, and K. A. Kadipasaoglu. Myocardial hemodynamics, physiology, and perfusion with an axial flow left ventricular assist device in the calf. ASAIO J. 50:47–53, 2004.

    Article  PubMed  Google Scholar 

  30. Umeki, A., T. Nishimura, M. Ando, Y. Takewa, K. Yamazaki, S. Kyo, M. Ono, T. Tsukiya, T. Mizuno, Y. Taenaka, and E. Tatsumi. Change of coronary flow by continuous-flow left ventricular assist device with cardiac beat synchronizing system (native heart load control system) in acute ischemic heart failure model. Circ. J. 77:995–1000, 2013.

    Article  PubMed  Google Scholar 

  31. Ventura, P. A., R. Alharethi, D. Budge, B. B. Reid, B. D. Horne, N. O. Mason, S. Stoker, W. T. Caine, B. Rasmusson, J. Doty, S. E. Clayson, and A. G. Kfoury. Differential impact on post-transplant outcomes between pulsatile- and continuous-flow left ventricular assist devices. Clin. Transpl. 25:E390–395, 2011.

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the following individuals for their support of this study: Karen Lott, Laura Lott, Cary Woolard, and Leslie Sherwood, DVM. This study was completed, in part, in support of the doctoral thesis and dissertation of C.R. Bartoli, MD, PhD entitled Partial vs. Full Support of the Heart with a Continuous-Flow Left Ventricular Assist Device: Implications for Myocardial Recovery. Funding for this project was provided, in part, by Roger M. Prizant Research Trust Fund, University of Louisville Clinical Translational Science Pilot Grant Program, and University of Louisville Cardiac Implant Science Endowment. Dr. Slaughter and Dr. Koenig have received funding unrelated to this study from industry sponsors for training and pre-clinical testing (HeartWare, Miami Lakes FL; St. Jude Medical, Minneapolis MN; Thoratec, Pleasanton CA). The authors have no other conflicts of interest to disclose. The left ventricular assist devices were provided by HeartWare (Miami Lakes, FL) and Thoratec (Pleasanton, CA) under material transfer agreements (MTA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven C. Koenig.

Additional information

Associate Editor Aleksander S. Popel oversaw the review of this article.

Kevin G. Soucy and Carlo R. Bartoli contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soucy, K.G., Bartoli, C.R., Phillips, D. et al. Continuous-Flow Left Ventricular Assist Device Support Improves Myocardial Supply:Demand in Chronic Heart Failure. Ann Biomed Eng 45, 1475–1486 (2017). https://doi.org/10.1007/s10439-017-1804-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-017-1804-x

Keywords

Navigation