Annals of Biomedical Engineering

, Volume 45, Issue 6, pp 1420–1433 | Cite as

Numerical Modeling of Nitinol Stent Oversizing in Arteries with Clinically Relevant Levels of Peripheral Arterial Disease: The Influence of Plaque Type on the Outcomes of Endovascular Therapy



Oversizing of the Nitinol stents in the femoro-popliteal arterial tract is commonly performed by clinicians and further encouraged by stent manufacturers. However, in spite of the procedure’s supposed benefits of strong wall apposition and increased luminal gain, its effects on the mechanical behavior of arteries with peripheral arterial disease are not fully clear. In this study, finite element (FE) analyses of endovascular revascularization of an idealized artery with 70% stenosis and three different plaque types have been performed to examine the influence of Nitinol stent oversizing on the arterial stresses and acute lumen gain. The analyses included the simulation of balloon angioplasty to model plaque failure, followed by stent implantation, in which four different oversizing ratios were investigated. Results showed that balloon angioplasty was crucial in determining the stress levels of the artery prior to stent implantation and heavily affected the outcome of endovascular therapy. For all plaque types, Nitinol stent oversizing was found to produce a marginal lumen gain in contrast to a significant increase in arterial stresses. For the arteries with lightly and moderately calcified plaques, oversizing was found to be non-critical; whereas for the arteries with heavily calcified plaques, the procedure should be avoided due to a risk of tissue failure.


Femoro-popliteal artery Calcification Finite element analysis (FEA) Percutaneous transluminal angioplasty (PTA) Plaque failure Stent deployment Stent mis-sizing Lumen gain Arterial stresses 



This investigation was supported by the Research Council of the Kantonsspital Aarau, the Swiss Heart Foundation and the Gotthard Schettler Foundation. The authors have no commercial, proprietary, or financial interest in any products or companies described in this article.


  1. 1.
    Alfonso, F., R. A. Byrne, F. Rivero, and A. Kastrati. Current treatment of in-stent restenosis. J. Am. Coll. Cardiol. 63:2659–2673, 2014.CrossRefPubMedGoogle Scholar
  2. 2.
    Barrett, H. E., E. M. Cunnane, E. G. Kavanagh, and M. T. Walsh. On the effect of calcification volume and configuration on the mechanical behaviour of carotid plaque tissue. J. Mech. Behav. Biomed. Mater. 56:45–56, 2016.CrossRefPubMedGoogle Scholar
  3. 3.
    Boland, E. L., J. A. Grogan, C. Conway, and P. E. McHugh. Computer simulation of the mechanical behaviour of implanted biodegradable stents in a remodelling artery. Jom 68:1198–1203, 2016.CrossRefGoogle Scholar
  4. 4.
    Chen, H. Y., B.-K. Koo, D. L. Bhatt, and G. S. Kassab. Impact of stent mis-sizing and mis-positioning on coronary fluid wall shear and intramural stress. J. Appl. Physiol. 115:285–292, 2013.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Chen, H. Y., A. K. Sinha, J. S. Choy, H. Zheng, M. Sturek, B. Bigelow, D. L. Bhatt, and G. S. Kassab. Mis-sizing of stent promotes intimal hyperplasia: impact of endothelial shear and intramural stress. AJP Heart. Circ. Physiol. 301:H2254–H2263, 2011.CrossRefGoogle Scholar
  6. 6.
    Chiastra, C., W. Wu, B. Dickerhoff, A. Aleiou, G. Dubini, H. Otake, F. Migliavacca, and J. F. LaDisa. Computational replication of the patient-specific stenting procedure for coronary artery bifurcations: From OCT and CT imaging to structural and hemodynamics analyses. J. Biomech. 49:2102–2111, 2015.CrossRefPubMedGoogle Scholar
  7. 7.
    Cho, H., M. Nango, Y. Sakai, E. Sohgawa, K. Kageyama, S. Hamamoto, T. Kitayama, A. Yamamoto, and Y. Miki. Neointimal hyperplasia after stent placement across size-discrepant vessels in an animal study. Jpn. J. Radiol. 32:340–346, 2014.CrossRefPubMedGoogle Scholar
  8. 8.
    Conway, C., J. P. McGarry, and P. E. McHugh. Modelling of atherosclerotic plaque for use in a computational test-bed for stent angioplasty. Ann. Biomed. Eng. 42:2425–2439, 2014.CrossRefPubMedGoogle Scholar
  9. 9.
    Conway, C., F. Sharif, J. P. McGarry, and P. E. McHugh. A computational test-bed to assess coronary stent implantation mechanics using a population-specific approach. Cardiovasc. Eng. Technol. 3:374–387, 2012.CrossRefGoogle Scholar
  10. 10.
    Cunnane, E. M., H. E. Barrett, E. G. Kavanagh, R. Mongrain, and M. T. Walsh. The influence of composition and location on the toughness of human atherosclerotic femoral plaque tissue. Acta Biomater. 31:264–275, 2016.CrossRefPubMedGoogle Scholar
  11. 11.
    Cunnane, E. M., J. J. Mulvihill, H. E. Barrett, D. A. Healy, E. G. Kavanagh, S. R. Walsh, and M. T. Walsh. Mechanical, biological and structural characterization of human atherosclerotic femoral plaque tissue. Acta Biomater. 11:295–303, 2015.CrossRefPubMedGoogle Scholar
  12. 12.
    Cunnane, E. M., J. J. E. Mulvihill, H. E. Barrett, M. M. Hennessy, E. G. Kavanagh, and M. T. Walsh. Mechanical properties and composition of carotid and femoral atherosclerotic plaques: a comparative study. J. Biomech. 49:3697–3704, 2016.CrossRefPubMedGoogle Scholar
  13. 13.
    Cunnane, E. M., J. J. E. Mulvihill, H. E. Barrett, and M. T. Walsh. Simulation of human atherosclerotic femoral plaque tissue: the influence of plaque material model on numerical results. Biomed. Eng. Online 14:S7, 2015.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Derksen, W. J. M., J. P. P. M. De Vries, A. Vink, E. Velema, J. A. Vos, D. De Kleijn, F. L. Moll, and G. Pasterkamp. Histologic atherosclerotic plaque characteristics are associated with restenosis rates after endarterectomy of the common and superficial femoral arteries. J. Vasc. Surg. 52:592–599, 2010.CrossRefPubMedGoogle Scholar
  15. 15.
    Dordoni, E., A. Meoli, W. Wu, G. Dubini, F. Migliavacca, G. Pennati, and L. Petrini. Fatigue behaviour of Nitinol peripheral stents: the role of plaque shape studied with computational structural analyses. Med. Eng. Phys. 36:842–849, 2014.CrossRefPubMedGoogle Scholar
  16. 16.
    Gasser, T. C., R. W. Ogden, and G. A. Holzapfel. Hyperelastic modelling of arterial layers with distributed collagen fibre orientations. J. R. Soc. Interface 3:15–35, 2006.CrossRefPubMedGoogle Scholar
  17. 17.
    Gökgöl, C., N. Diehm, F. R. Nezami, and P. Büchler. Nitinol stent oversizing in patients undergoing popliteal artery revascularization: a finite element study. Ann. Biomed. Eng. 43:2868–2880, 2015.CrossRefPubMedGoogle Scholar
  18. 18.
    Gornik, H. L., and J. A. Beckman. Cardiology patient page. Peripheral arterial disease. Circulation 111:e169–e172, 2005.CrossRefPubMedGoogle Scholar
  19. 19.
    Herisson, F., M. F. Heymann, M. Chétiveaux, C. Charrier, S. Battaglia, P. Pilet, T. Rouillon, M. Krempf, P. Lemarchand, D. Heymann, and Y. Gouëffic. Carotid and femoral atherosclerotic plaques show different morphology. Atherosclerosis 216:348–354, 2011.CrossRefPubMedGoogle Scholar
  20. 20.
    Hoffmann, R., G. S. Mintz, J. J. Popma, L. F. Satler, A. D. Pichard, K. M. Kent, C. Walsh, P. Mackell, and M. B. Leon. Chronic arterial responses to stent implantation: a serial intravascular ultrasound analysis of Palmaz-Schatz stents in native coronary arteries. J. Am. Coll. Cardiol. 28:1134–1139, 1996.CrossRefPubMedGoogle Scholar
  21. 21.
    Holzapfel, G. A., J. Casey, and G. Bao. Mechanics of angioplasty: wall, balloon and stent. Mech. Biol. ASME 242:141–156, 2000.Google Scholar
  22. 22.
    Holzapfel, G. A., G. Sommer, and P. Regitnig. Anisotropic mechanical properties of tissue components in human atherosclerotic plaques. J. Biomech. Eng. 126:657–665, 2004.CrossRefPubMedGoogle Scholar
  23. 23.
    Holzapfel, G. A., M. Stadler, and T. C. Gasser. Changes in the mechanical environment of stenotic arteries during interaction with stents: computational assessment of parametric stent designs. J. Biomech. Eng. 127:166–180, 2005.CrossRefPubMedGoogle Scholar
  24. 24.
    Holzapfel, G. A., M. Stadler, and C. A. J. Schulze-Bauer. A layer-specific three-dimensional model for the simulation of balloon angioplasty using magnetic resonance imaging and mechanical testing. Ann. Biomed. Eng. 30:753–767, 2002.CrossRefPubMedGoogle Scholar
  25. 25.
    Kirsch, E. C., M. S. Khangure, P. Morling, T. J. York, and W. Mcauliffe. Oversizing of self-expanding stents : influence on the development of neointimal hyperplasia of the carotid artery in a canine model. Am. J. Neuroradiol. 23:121–127, 2002.PubMedGoogle Scholar
  26. 26.
    LaDisa, J. F., L. E. Olson, I. Guler, D. A. Hettrick, J. R. Kersten, D. C. Warltier, and P. S. Pagel. Circumferential vascular deformation after stent implantation alters wall shear stress evaluated with time-dependent 3D computational fluid dynamics models. J. Appl. Physiol. 98:947–957, 2005.CrossRefPubMedGoogle Scholar
  27. 27.
    Li, F., M. M. McDermott, D. Li, T. J. Carroll, D. S. Hippe, C. M. Kramer, Z. Fan, X. Zhao, T. S. Hatsukami, B. Chu, J. Wang, and C. Yuan. The association of lesion eccentricity with plaque morphology and components in the superficial femoral artery: a high-spatial-resolution, multi-contrast weighted CMR study. J. Cardiovasc. Magn. Reson. 12:37, 2010.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Loree, H. M., A. J. Grodzinsky, S. Y. Park, L. J. Gibson, and R. T. Lee. Static circumferential tangential modulus of human atherosclerotic tissue. J. Biomech. 27:195–204, 1994.CrossRefPubMedGoogle Scholar
  29. 29.
    Meoli, A., E. Dordoni, L. Petrini, F. Migliavacca, G. Dubini, and G. Pennati. Computational modelling of in vitro set-ups for peripheral self-expanding Nitinol stents: the importance of stent-wall interaction in the assessment of the fatigue resistance. Cardiovasc. Eng. Technol. 4:474–484, 2013.CrossRefGoogle Scholar
  30. 30.
    Migliavacca, F., L. Petrini, P. Massarotti, S. Schievano, F. Auricchio, and G. Dubini. Stainless and shape memory alloy coronary stents: a computational study on the interaction with the vascular wall. Biomech. Model. Mechanobiol. 2:205–217, 2004.CrossRefPubMedGoogle Scholar
  31. 31.
    Moreno, P. R., K. R. Purushothaman, V. Fuster, and W. N. O’Connor. Intimomedial interface damage and adventitial inflammation is increased beneath disrupted atherosclerosis in the aorta: implications for plaque vulnerability. Circulation 105:2504–2511, 2002.CrossRefPubMedGoogle Scholar
  32. 32.
    Mulvihill, J. J., E. M. Cunnane, S. M. McHugh, E. G. Kavanagh, S. R. Walsh, and M. T. Walsh. Mechanical, biological and structural characterization of in vitro ruptured human carotid plaque tissue. Acta Biomater. 9:9027–9035, 2013.CrossRefPubMedGoogle Scholar
  33. 33.
    Norgren, L., W. R. Hiatt, J. A. Dormandy, M. R. Nehler, K. A. Harris, and F. G. R. Fowkes. Inter-society consensus for the management of peripheral arterial disease (TASC II). J. Vasc. Surg. 45:S5–S67, 2007.CrossRefPubMedGoogle Scholar
  34. 34.
    Petrini, L., A. Trotta, E. Dordoni, F. Migliavacca, G. Dubini, P. V. Lawford, J. N. Gosai, D. M. Ryan, D. Testi, and G. Pennati. A computational approach for the prediction of fatigue behaviour in peripheral stents: application to a clinical case. Ann. Biomed. Eng. 2015. doi: 10.1007/s10439-015-1472-7.Google Scholar
  35. 35.
    Petrini, L., W. Wu, E. Dordoni, A. Meoli, F. Migliavacca, and G. Pennati. Fatigue behavior characterization of Nitinol for peripheral stents. Funct. Mater. Lett. 05:1250012, 2012.CrossRefGoogle Scholar
  36. 36.
    Piamsomboon, C., G. S. Roubin, M. W. Liu, S. S. Iyer, A. Mathur, L. S. Dean, C. R. Gomez, J. J. Vitek, N. Chattipakorn, and G. Yates. Relationship between oversizing of self-expanding stents and late loss index in carotid stenting. Cathet. Cardiovasc. Diagn. 143:139–143, 1998.CrossRefGoogle Scholar
  37. 37.
    Rebelo, N., R. Fu, and M. Lawrenchuk. Study of a Nitinol stent deployed into anatomically accurate artery geometry and subjected to realistic service loading. J. Mater. Eng. Perform. 18:655–663, 2009.CrossRefGoogle Scholar
  38. 38.
    Saguner, A. M., T. Traupe, L. Räber, N. Hess, Y. Banz, A. R. Saguner, N. Diehm, and O. M. Hess. Oversizing and restenosis with self-expanding stents in iliofemoral arteries. Cardiovasc. Intervent. Radiol. 35:906–913, 2012.CrossRefPubMedGoogle Scholar
  39. 39.
    Schulze-bauer, C. A. J., P. Regitnig, and G. A. Holzapfel. Mechanics of the human femoral adventitia including the high-pressure response. Am. J. Physiol. Hear. Circ. Physiol. 282:2427–2440, 2002.CrossRefGoogle Scholar
  40. 40.
    Smilde, T. J., F. W. van den Berkmortel, G. H. Boers, H. Wollersheim, T. de Boo, H. van Langen, and f Stalenhoef. Carotid and femoral artery wall thickness and stiffness in patients at risk for cardiovascular disease, with special emphasis on hyperhomocysteinemia. Arterioscler. Thromb. Vasc. Biol. 18:1958–1963, 1998.CrossRefPubMedGoogle Scholar
  41. 41.
    Stary, H. C., D. Blankenhorn, A. B. Chandler, S. Glagov, W. Insull, M. E. Rosenfeld, S. Schaffer, C. J. Schwartz, and W. D. Wagner. A definition of the intima of human arteries and of its atherosclerosis-prone regions. Circulation 85:391–405, 1992.CrossRefPubMedGoogle Scholar
  42. 42.
    Stiegler, H., and R. Brandl. Importance of ultrasound for diagnosing periphereal arterial disease. Ultraschall Med. 30:334–374, 2009.CrossRefPubMedGoogle Scholar
  43. 43.
    Stoeckel, D., A. Pelton, and T. Duerig. Self-expanding Nitinol stents: material and design considerations. Eur. Radiol. 14:292–301, 2004.CrossRefPubMedGoogle Scholar
  44. 44.
    Tai, N. R., A. Giudiceandrea, H. J. Salacinski, A. M. Seifalian, and G. Hamilton. In vivo femoropopliteal arterial wall compliance in subjects with and without lower limb vascular disease. J. Vasc. Surg. 30:936–945, 1999.CrossRefPubMedGoogle Scholar
  45. 45.
    Timmins, L. H., M. W. Miller, F. J. Clubb, and J. E. Moore. Increased artery wall stress post-stenting leads to greater intimal thickening. Lab. Invest. 91:955–967, 2011.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Zeller, T. Current state of endovascular treatment of femoro-popliteal artery disease. Vasc. Med. 12:223–234, 2007.CrossRefPubMedGoogle Scholar
  47. 47.
    Zhao, H. Q., A. Nikanorov, R. Virmani, R. Jones, E. Pacheco, and L. B. Schwartz. Late stent expansion and neointimal proliferation of oversized Nitinol stents in peripheral arteries. Cardiovasc. Intervent. Radiol. 32:720–726, 2009.CrossRefPubMedGoogle Scholar

Copyright information

© Biomedical Engineering Society 2017

Authors and Affiliations

  • Can Gökgöl
    • 1
  • Nicolas Diehm
    • 2
    • 3
  • Philippe Büchler
    • 1
  1. 1.Institute for Surgical Technology and BiomechanicsUniversity of BernBernSwitzerland
  2. 2.Clinical and Interventional AngiologyVascular Institute Central SwitzerlandAarauSwitzerland
  3. 3.University of Applied Sciences FurtwangenVillingen-SchwenningenGermany

Personalised recommendations