Abstract
An incompetent aortic valve (AV) results in aortic regurgitation (AR), where retrograde flow of blood into the left ventricle (LV) is observed. In this work, we parametrically characterized the detailed changes in intra-ventricular flow during diastole as a result of AR in a physiological in vitro left-heart simulator (LHS). The loss of energy within the LV as the level of AR increased was also assessed. The validated LHS consisted of an optically-clear, flexible wall LV and a modular AV holder. Two-component, planar, digital particle image velocimetry was used to visualize and quantify intra-ventricular flow. A large coherent vortical structure which engulfed the whole LV was observed under control conditions. In the cases with AR, the regurgitant jet was observed to generate a “kinematic obstruction” between the mitral valve and the LV apex, preventing the trans-mitral jet from generating a coherent vortical structure. The regurgitant jet was also observed to impinge on the inferolateral wall of the LV. Energy dissipation rate (EDR) for no, trace, mild, and moderate AR were found to be 1.15, 2.26, 3.56, and 5.99 W/m3, respectively. This study has, for the first time, performed an in vitro characterization of intra-ventricular flow in the presence of AR. Mechanistically, the formation of a “kinematic obstruction” appears to be the cause of the increased EDR (a metric quantifiable in vivo) during AR. EDR increases non-linearly with AR fraction and could potentially be used as a metric to grade severity of AR and develop clinical interventional timing strategies for patients.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Augoustides, J. G. T., Y. Wolfe, E. K. Walsh, and W. Y. Szeto. Recent advances in aortic valve disease: highlights from a bicuspid aortic valve to transcatheter aortic valve replacement. J. Cardiothorac. Vasc. Anesth. 23:569–576, 2009.
Austen, W. G., H. W. Bender, B. R. Wilcox, and A. G. Morrow. Experimental aortic regurgitation. J. Surg. Res. 3:466–470, 1963.
Bekeredjian, R., and P. A. Grayburn. Valvular heart disease: aortic regurgitation. Circulation 112:125–134, 2005.
Beroukhim, R. S., D. A. Graham, R. Margossian, D. W. Brown, T. Geva, and S. D. Colan. An echocardiographic model predicting severity of aortic regurgitation in congenital heart disease. Circ. Cardiovasc. Imaging 3:542–549, 2010.
Bonow, R. O., B. A. Carabello, K. Chatterjee, A. C. de Leon, D. P. Faxon, M. D. Freed, W. H. Gaasch, B. W. Lytle, R. A. Nishimura, P. T. O’Gara, R. A. O’Rourke, C. M. Otto, P. M. Shah, J. S. Shanewise, S. C. Smith, A. K. Jacobs, C. D. Adams, J. L. Anderson, E. M. Antman, D. P. Faxon, V. Fuster, J. L. Halperin, L. F. Hiratzka, S. A. Hunt, B. W. Lytle, R. Nishimura, R. L. Page, and B. Riegel. ACC/AHA 2006 Guidelines for the management of patients with valvular heart disease. J. Am. Coll. Cardiol. 48:e1–e148, 2006.
Calleja, A., P. Thavendiranathan, R. I. Ionasec, H. Houle, S. Liu, I. Voigt, C. Sai Sudhakar, J. Crestanello, T. Ryan, and M. A. Vannan. Automated quantitative 3-dimensional modeling of the aortic valve and root by 3-dimensional transesophageal echocardiography in normals, aortic regurgitation, and aortic stenosis: comparison to computed tomography in normals and clinical implications. Circ. Cardiovasc. Imaging 6:99–108, 2013.
Carlsson, M., E. Heiberg, J. Toger, and H. Arheden. Quantification of left and right ventricular kinetic energy using four-dimensional intracardiac magnetic resonance imaging flow measurements. Am. J. Physiol. Heart Circ. Physiol. 302:H893–H900, 2012.
Ewe, S. H., V. Delgado, R. van der Geest, J. J. M. Westenberg, M. L. A. Haeck, T. G. Witkowski, D. Auger, N. A. Marsan, E. R. Holman, A. de Roos, M. J. Schalij, J. J. Bax, A. Sieders, and H. J. Siebelink. Accuracy of three-dimensional versus two-dimensional echocardiography for quantification of aortic regurgitation and validation by three-dimensional three-directional velocity-encoded magnetic resonance imaging. Am. J. Cardiol. 112:560–566, 2013.
Goldbarg, S. H., and J. L. Halperin. Aortic regurgitation: disease progression and management. Nat. Clin. Pract. Cardiovasc. Med. 5:269–279, 2008.
Gotzmann, M., M. Lindstaedt, and A. Mügge. From pressure overload to volume overload: aortic regurgitation after transcatheter aortic valve implantation. Am. Heart J. 163:903–911, 2012.
Grossman, W. Diastolic properties of the left ventricle. Ann. Intern. Med. 84:316, 1976.
Leon, M. B., et al. Transcatheter or surgical aortic-valve replacement in intermediate-risk patients. N. Engl. J. Med. 374:1609–1609, 2016. doi:10.1056/NEJMoa1514616.
Lerakis, S., S. S. Hayek, and P. S. Douglas. Paravalvular aortic leak after transcatheter aortic valve replacement: current knowledge. Circulation 127:397–407, 2013.
Nishimura, R. A., C. M. Otto, R. O. Bonow, B. A. Carabello, J. P. Erwin, R. A. Guyton, P. T. O’Gara, C. E. Ruiz, N. J. Skubas, P. Sorajja, T. M. Sundt, and J. D. Thomas. 2014 AHA/ACC guideline for the management of patients with valvular heart disease. J. Am. Coll. Cardiol. 63:e57–e185, 2014.
Okafor, I., V. Raghav, P. Midha, G. Kumar, and A. Yoganathan. The hemodynamic effects of acute aortic regurgitation into a stiffened left ventricle resulting from chronic aortic stenosis. Am. J. Physiol. Hear. Circ. Physiol. 310:H1801–H1807, 2016.
Okafor, I. U., A. Santhanakrishnan, B. D. Chaffins, L. Mirabella, J. N. Oshinski, and A. P. Yoganathan. Cardiovascular magnetic resonance compatible physical model of the left ventricle for multi-modality characterization of wall motion and hemodynamics. J. Cardiovasc. Magn. Reson. 17:51, 2015.
Okafor, I. U., A. Santhanakrishnan, V. S. Raghav, and A. P. Yoganathan. Role of mitral annulus diastolic geometry on intraventricular filling dynamics. J. Biomech. Eng. 137:121007, 2015.
Pedrizzetti, G., and F. Domenichini. Left ventricular fluid mechanics: the long way from theoretical models to clinical applications. Ann. Biomed. Eng. 2014. doi:10.1007/s10439-014-1101-x.
Pedrizzetti, G., and P. P. Sengupta. Vortex imaging: new information gain from tracking cardiac energy loss. Eur. Hear. J. Cardiovasc. Imaging 10–11, 2015. doi:10.1093/ehjci/jev070
Pedrizzetti, G., A. R. Martiniello, V. Bianchi, A. D’Onofrio, P. Caso, and G. Tonti. Cardiac fluid dynamics anticipates heart adaptation. J. Biomech. 48:388–391, 2015.
Pierrakos, O., and P. P. Vlachos. The effect of vortex formation on left ventricular filling and mitral valve efficiency. J. Biomech. Eng. 128:527–539, 2006.
Raffel, M., C. E. Willert, S. T. Wereley, and J. Kompenhans. Particle Image Velocimetry. Berlin: Springer, 2007.
Saarenrinne, P., and M. Piirto. Turbulent kinetic energy dissipation rate estimation from PIV velocity vector fields. Exp. Fluids 2000. doi:10.1007/s003480070032.
Sakhaeimanesh, A. A., and Y. S. Morsi. Analysis of regurgitation, mean systolic pressure drop and energy losses for two artificial aortic valves. J. Med. Eng. Technol. 23:63–68, 1999.
Santhanakrishnan, A., I. Okafor, G. Kumar, and A. P. Yoganathan. Atrial systole enhances intraventricular filling flow propagation during increasing heart rate. J. Biomech. 1–6, 2016. doi:10.1016/j.jbiomech.2016.01.026
Sharp, K. V., and R. J. Adrian. PIV Study of small-scale flow structure around a Rushton turbine. AIChE J. 47:766–778, 2001.
Sinning, J.-M., M. Vasa-Nicotera, D. Chin, C. Hammerstingl, A. Ghanem, J. Bence, J. Kovac, E. Grube, G. Nickenig, and N. Werner. Evaluation and management of paravalvular aortic regurgitation after transcatheter aortic valve replacement. J. Am. Coll. Cardiol. 62:11–20, 2013.
Stout, K. K., and E. D. Verrier. Acute valvular regurgitation. Circulation 119:3232–3241, 2009.
Stugaard, M., H. Koriyama, K. Katsuki, K. Masuda, T. Asanuma, Y. Takeda, Y. Sakata, K. Itatani, and S. Nakatani. Energy loss in the left ventricle obtained by vector flow mapping as a new quantitative measure of severity of aortic regurgitation: a combined experimental and clinical study. Eur. Hear. J. Cardiovasc. Imaging 16:723–730, 2015.
Uejima, T., A. Koike, H. Sawada, T. Aizawa, S. Ohtsuki, M. Tanaka, T. Furukawa, and A. G. Fraser. A new echocardiographic method for identifying vortex flow in the left ventricle: numerical validation. Ultrasound Med. Biol. 36:772–788, 2010.
Uretsky, S., A. Supariwala, P. Nidadovolu, S. S. Khokhar, C. Comeau, O. Shubayev, F. Campanile, and S. D. Wolff. Quantification of left ventricular remodeling in response to isolated aortic or mitral regurgitation. J. Cardiovasc. Magn. Reson. 12:32, 2010.
Welch, G. H., E. Braunwald, and S. J. Sarnoff. Hemodynamic effects of quantitatively varied experimental aortic regurgitation. Circ. Res. 5:546–551, 1957.
Wittlinger, T., O. Dzemali, F. Bakhtiary, A. Moritz, and P. Kleine. Hemodynamic evaluation of aortic regurgitation by magnetic resonance imaging. Asian Cardiovasc. Thorac. Ann. 16:278–283, 2008.
Acknowledgments
We would like to thank VenAir (Terrassa-Barcelona, Spain) for casting the silicone LV, the machine shop personnel at the School of Chemical and Biomolecular Engineering at Georgia Tech for machining the LHS, and finally Procter & Gamble for providing the glycerin used in this work. Funding was provided by American Heart Association (Grant No. 16POST27520030).
Conflict of Interests
The authors have no conflicts of interests to disclose.
Author information
Authors and Affiliations
Corresponding author
Additional information
Associate Editor Umberto Morbiducci oversaw the review of this article.
Electronic supplementary material
Below is the link to the electronic supplementary material.
Supplementary material 1 (MP4 5375 kb)
Supplementary material 2 (MP4 6207 kb)
Supplementary material 4 (MP4 6196 kb)
Supplementary material 5 (TIFF 1230 kb)
Supplementary Figure 1: Out of plane vorticity color map overlaid with streamlines for the plane 5 mm offset from the central LVOT plane of the mild AR case at T = (a) 0.05 s, start E-wave, (b) 0.15 s, peak E-wave, (c) 0.275 s, end E-wave, and (d) 0.5 s, peak A-wave
Rights and permissions
About this article
Cite this article
Okafor, I., Raghav, V., Condado, J.F. et al. Aortic Regurgitation Generates a Kinematic Obstruction Which Hinders Left Ventricular Filling. Ann Biomed Eng 45, 1305–1314 (2017). https://doi.org/10.1007/s10439-017-1790-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10439-017-1790-z