Skip to main content
Log in

Aortic Regurgitation Generates a Kinematic Obstruction Which Hinders Left Ventricular Filling

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

An incompetent aortic valve (AV) results in aortic regurgitation (AR), where retrograde flow of blood into the left ventricle (LV) is observed. In this work, we parametrically characterized the detailed changes in intra-ventricular flow during diastole as a result of AR in a physiological in vitro left-heart simulator (LHS). The loss of energy within the LV as the level of AR increased was also assessed. The validated LHS consisted of an optically-clear, flexible wall LV and a modular AV holder. Two-component, planar, digital particle image velocimetry was used to visualize and quantify intra-ventricular flow. A large coherent vortical structure which engulfed the whole LV was observed under control conditions. In the cases with AR, the regurgitant jet was observed to generate a “kinematic obstruction” between the mitral valve and the LV apex, preventing the trans-mitral jet from generating a coherent vortical structure. The regurgitant jet was also observed to impinge on the inferolateral wall of the LV. Energy dissipation rate (EDR) for no, trace, mild, and moderate AR were found to be 1.15, 2.26, 3.56, and 5.99 W/m3, respectively. This study has, for the first time, performed an in vitro characterization of intra-ventricular flow in the presence of AR. Mechanistically, the formation of a “kinematic obstruction” appears to be the cause of the increased EDR (a metric quantifiable in vivo) during AR. EDR increases non-linearly with AR fraction and could potentially be used as a metric to grade severity of AR and develop clinical interventional timing strategies for patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Augoustides, J. G. T., Y. Wolfe, E. K. Walsh, and W. Y. Szeto. Recent advances in aortic valve disease: highlights from a bicuspid aortic valve to transcatheter aortic valve replacement. J. Cardiothorac. Vasc. Anesth. 23:569–576, 2009.

    Article  PubMed  Google Scholar 

  2. Austen, W. G., H. W. Bender, B. R. Wilcox, and A. G. Morrow. Experimental aortic regurgitation. J. Surg. Res. 3:466–470, 1963.

    Article  CAS  PubMed  Google Scholar 

  3. Bekeredjian, R., and P. A. Grayburn. Valvular heart disease: aortic regurgitation. Circulation 112:125–134, 2005.

    Article  PubMed  Google Scholar 

  4. Beroukhim, R. S., D. A. Graham, R. Margossian, D. W. Brown, T. Geva, and S. D. Colan. An echocardiographic model predicting severity of aortic regurgitation in congenital heart disease. Circ. Cardiovasc. Imaging 3:542–549, 2010.

    Article  PubMed  Google Scholar 

  5. Bonow, R. O., B. A. Carabello, K. Chatterjee, A. C. de Leon, D. P. Faxon, M. D. Freed, W. H. Gaasch, B. W. Lytle, R. A. Nishimura, P. T. O’Gara, R. A. O’Rourke, C. M. Otto, P. M. Shah, J. S. Shanewise, S. C. Smith, A. K. Jacobs, C. D. Adams, J. L. Anderson, E. M. Antman, D. P. Faxon, V. Fuster, J. L. Halperin, L. F. Hiratzka, S. A. Hunt, B. W. Lytle, R. Nishimura, R. L. Page, and B. Riegel. ACC/AHA 2006 Guidelines for the management of patients with valvular heart disease. J. Am. Coll. Cardiol. 48:e1–e148, 2006.

    Article  PubMed  Google Scholar 

  6. Calleja, A., P. Thavendiranathan, R. I. Ionasec, H. Houle, S. Liu, I. Voigt, C. Sai Sudhakar, J. Crestanello, T. Ryan, and M. A. Vannan. Automated quantitative 3-dimensional modeling of the aortic valve and root by 3-dimensional transesophageal echocardiography in normals, aortic regurgitation, and aortic stenosis: comparison to computed tomography in normals and clinical implications. Circ. Cardiovasc. Imaging 6:99–108, 2013.

    Article  PubMed  Google Scholar 

  7. Carlsson, M., E. Heiberg, J. Toger, and H. Arheden. Quantification of left and right ventricular kinetic energy using four-dimensional intracardiac magnetic resonance imaging flow measurements. Am. J. Physiol. Heart Circ. Physiol. 302:H893–H900, 2012.

    Article  CAS  PubMed  Google Scholar 

  8. Ewe, S. H., V. Delgado, R. van der Geest, J. J. M. Westenberg, M. L. A. Haeck, T. G. Witkowski, D. Auger, N. A. Marsan, E. R. Holman, A. de Roos, M. J. Schalij, J. J. Bax, A. Sieders, and H. J. Siebelink. Accuracy of three-dimensional versus two-dimensional echocardiography for quantification of aortic regurgitation and validation by three-dimensional three-directional velocity-encoded magnetic resonance imaging. Am. J. Cardiol. 112:560–566, 2013.

    Article  PubMed  Google Scholar 

  9. Goldbarg, S. H., and J. L. Halperin. Aortic regurgitation: disease progression and management. Nat. Clin. Pract. Cardiovasc. Med. 5:269–279, 2008.

    Article  PubMed  Google Scholar 

  10. Gotzmann, M., M. Lindstaedt, and A. Mügge. From pressure overload to volume overload: aortic regurgitation after transcatheter aortic valve implantation. Am. Heart J. 163:903–911, 2012.

    Article  PubMed  Google Scholar 

  11. Grossman, W. Diastolic properties of the left ventricle. Ann. Intern. Med. 84:316, 1976.

    Article  CAS  PubMed  Google Scholar 

  12. Leon, M. B., et al. Transcatheter or surgical aortic-valve replacement in intermediate-risk patients. N. Engl. J. Med. 374:1609–1609, 2016. doi:10.1056/NEJMoa1514616.

    Article  CAS  PubMed  Google Scholar 

  13. Lerakis, S., S. S. Hayek, and P. S. Douglas. Paravalvular aortic leak after transcatheter aortic valve replacement: current knowledge. Circulation 127:397–407, 2013.

    Article  PubMed  Google Scholar 

  14. Nishimura, R. A., C. M. Otto, R. O. Bonow, B. A. Carabello, J. P. Erwin, R. A. Guyton, P. T. O’Gara, C. E. Ruiz, N. J. Skubas, P. Sorajja, T. M. Sundt, and J. D. Thomas. 2014 AHA/ACC guideline for the management of patients with valvular heart disease. J. Am. Coll. Cardiol. 63:e57–e185, 2014.

    Article  PubMed  Google Scholar 

  15. Okafor, I., V. Raghav, P. Midha, G. Kumar, and A. Yoganathan. The hemodynamic effects of acute aortic regurgitation into a stiffened left ventricle resulting from chronic aortic stenosis. Am. J. Physiol. Hear. Circ. Physiol. 310:H1801–H1807, 2016.

    Article  Google Scholar 

  16. Okafor, I. U., A. Santhanakrishnan, B. D. Chaffins, L. Mirabella, J. N. Oshinski, and A. P. Yoganathan. Cardiovascular magnetic resonance compatible physical model of the left ventricle for multi-modality characterization of wall motion and hemodynamics. J. Cardiovasc. Magn. Reson. 17:51, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Okafor, I. U., A. Santhanakrishnan, V. S. Raghav, and A. P. Yoganathan. Role of mitral annulus diastolic geometry on intraventricular filling dynamics. J. Biomech. Eng. 137:121007, 2015.

    Article  PubMed  Google Scholar 

  18. Pedrizzetti, G., and F. Domenichini. Left ventricular fluid mechanics: the long way from theoretical models to clinical applications. Ann. Biomed. Eng. 2014. doi:10.1007/s10439-014-1101-x.

    PubMed  Google Scholar 

  19. Pedrizzetti, G., and P. P. Sengupta. Vortex imaging: new information gain from tracking cardiac energy loss. Eur. Hear. J. Cardiovasc. Imaging 10–11, 2015. doi:10.1093/ehjci/jev070

  20. Pedrizzetti, G., A. R. Martiniello, V. Bianchi, A. D’Onofrio, P. Caso, and G. Tonti. Cardiac fluid dynamics anticipates heart adaptation. J. Biomech. 48:388–391, 2015.

    Article  PubMed  Google Scholar 

  21. Pierrakos, O., and P. P. Vlachos. The effect of vortex formation on left ventricular filling and mitral valve efficiency. J. Biomech. Eng. 128:527–539, 2006.

    Article  PubMed  Google Scholar 

  22. Raffel, M., C. E. Willert, S. T. Wereley, and J. Kompenhans. Particle Image Velocimetry. Berlin: Springer, 2007.

    Google Scholar 

  23. Saarenrinne, P., and M. Piirto. Turbulent kinetic energy dissipation rate estimation from PIV velocity vector fields. Exp. Fluids 2000. doi:10.1007/s003480070032.

    Google Scholar 

  24. Sakhaeimanesh, A. A., and Y. S. Morsi. Analysis of regurgitation, mean systolic pressure drop and energy losses for two artificial aortic valves. J. Med. Eng. Technol. 23:63–68, 1999.

    Article  CAS  PubMed  Google Scholar 

  25. Santhanakrishnan, A., I. Okafor, G. Kumar, and A. P. Yoganathan. Atrial systole enhances intraventricular filling flow propagation during increasing heart rate. J. Biomech. 1–6, 2016. doi:10.1016/j.jbiomech.2016.01.026

  26. Sharp, K. V., and R. J. Adrian. PIV Study of small-scale flow structure around a Rushton turbine. AIChE J. 47:766–778, 2001.

    Article  CAS  Google Scholar 

  27. Sinning, J.-M., M. Vasa-Nicotera, D. Chin, C. Hammerstingl, A. Ghanem, J. Bence, J. Kovac, E. Grube, G. Nickenig, and N. Werner. Evaluation and management of paravalvular aortic regurgitation after transcatheter aortic valve replacement. J. Am. Coll. Cardiol. 62:11–20, 2013.

    Article  PubMed  Google Scholar 

  28. Stout, K. K., and E. D. Verrier. Acute valvular regurgitation. Circulation 119:3232–3241, 2009.

    Article  PubMed  Google Scholar 

  29. Stugaard, M., H. Koriyama, K. Katsuki, K. Masuda, T. Asanuma, Y. Takeda, Y. Sakata, K. Itatani, and S. Nakatani. Energy loss in the left ventricle obtained by vector flow mapping as a new quantitative measure of severity of aortic regurgitation: a combined experimental and clinical study. Eur. Hear. J. Cardiovasc. Imaging 16:723–730, 2015.

    Article  Google Scholar 

  30. Uejima, T., A. Koike, H. Sawada, T. Aizawa, S. Ohtsuki, M. Tanaka, T. Furukawa, and A. G. Fraser. A new echocardiographic method for identifying vortex flow in the left ventricle: numerical validation. Ultrasound Med. Biol. 36:772–788, 2010.

    Article  PubMed  Google Scholar 

  31. Uretsky, S., A. Supariwala, P. Nidadovolu, S. S. Khokhar, C. Comeau, O. Shubayev, F. Campanile, and S. D. Wolff. Quantification of left ventricular remodeling in response to isolated aortic or mitral regurgitation. J. Cardiovasc. Magn. Reson. 12:32, 2010.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Welch, G. H., E. Braunwald, and S. J. Sarnoff. Hemodynamic effects of quantitatively varied experimental aortic regurgitation. Circ. Res. 5:546–551, 1957.

    Article  PubMed  Google Scholar 

  33. Wittlinger, T., O. Dzemali, F. Bakhtiary, A. Moritz, and P. Kleine. Hemodynamic evaluation of aortic regurgitation by magnetic resonance imaging. Asian Cardiovasc. Thorac. Ann. 16:278–283, 2008.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank VenAir (Terrassa-Barcelona, Spain) for casting the silicone LV, the machine shop personnel at the School of Chemical and Biomolecular Engineering at Georgia Tech for machining the LHS, and finally Procter & Gamble for providing the glycerin used in this work. Funding was provided by American Heart Association (Grant No. 16POST27520030).

Conflict of Interests

The authors have no conflicts of interests to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajit P. Yoganathan.

Additional information

Associate Editor Umberto Morbiducci oversaw the review of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (MP4 5375 kb)

Supplementary material 2 (MP4 6207 kb)

Supplementary material 3 (MP4 3253 kb)

Supplementary material 4 (MP4 6196 kb)

Supplementary material 5 (TIFF 1230 kb)

Supplementary Figure 1: Out of plane vorticity color map overlaid with streamlines for the plane 5 mm offset from the central LVOT plane of the mild AR case at T = (a) 0.05 s, start E-wave, (b) 0.15 s, peak E-wave, (c) 0.275 s, end E-wave, and (d) 0.5 s, peak A-wave

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Okafor, I., Raghav, V., Condado, J.F. et al. Aortic Regurgitation Generates a Kinematic Obstruction Which Hinders Left Ventricular Filling. Ann Biomed Eng 45, 1305–1314 (2017). https://doi.org/10.1007/s10439-017-1790-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-017-1790-z

Keywords

Navigation