Skip to main content

Pubovisceralis Muscle Fiber Architecture Determination: Comparison Between Biomechanical Modeling and Diffusion Tensor Imaging

Abstract

Biomechanical analysis of pelvic floor dysfunction requires knowledge of certain biomechanical parameters, such as muscle fiber direction, in order to adequately model function. Magnetic resonance (MR) diffusion tensor imaging (DTI) provides an estimate of overall muscle fiber directionality based on the mathematical description of water diffusivity. This work aimed at evaluating the concurrence between pubovisceralis muscle fiber representations obtained from DTI, and the maximum principal stress lines obtained through the finite element method. Seven datasets from axial T2-weighted images were used to build numerical models, and muscle fiber orientation estimated from the DT images. The in-plane projections of the first eigenvector of both vector fields describing muscle fiber orientation were extracted and compared. The directional consistency was evaluated by calculating the angle between the normalized vectors for the entire muscle and also for the right and left insertions, middle portions, and anorectal area. The values varied between 28° ± 6 (right middle portion) and 34° ± 9 (anorectal area), and were higher than the angular precision of the DT estimates, evaluated using wild bootstrapping analysis. Angular dispersion ranged from 17° ± 4 (left middle portion) to 23° ± 5 (anorectal area). Further studies are needed to examine acceptability of these differences when integrating the vectors estimated from DTI in the numerical analysis.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Abbreviations

BMI:

Body mass index

DTI:

Diffusion tensor imaging

FEM:

Finite element method

FSE:

Fast spin-echo

ICIQ-SF:

International Consultation of Incontinence Questionnaire-Short Form

LA:

Levator ani

LMMSE:

Linear minimum mean square error

MPSL:

Maximum principal stress lines

MRI:

Magnetic resonance imaging

NSA:

Number of signals averaged

PFM:

Pelvic floor muscles

PVM:

Pubovisceralis muscle

SENSE:

Sensitivity encoding

SNR:

Signal-to-noise ratio

SPAIR:

SPectral Attenuated Inversion Recovery

SS-SE-EPI:

Single-shot spin-echo echo planar imaging

TE:

Echo time

TR:

Repetition time

References

  1. 1.

    Abramowitch, S. D., A. Feola, Z. Jallah, and P. A. Moalli. Tissue mechanics, animal models, and pelvic organ prolapse: a review. Eur. J. Obstet. Gynecol. Reprod. Biol. 144(Suppl 1):S146–S158, 2009.

    Article  PubMed  Google Scholar 

  2. 2.

    Agur, A. M., V. Ng-Thow-Hing, K. A. Ball, E. Fiume, and N. H. McKee. Documentation and three-dimensional modelling of human soleus muscle architecture. Clin. Anat. 16(4):285–293, 2003.

    Article  PubMed  Google Scholar 

  3. 3.

    Basser, P. J., S. Pajevic, C. Pierpaoli, J. Duda, and A. Aldroubi. In vivo fiber tractography using DT-MRI data. Magn. Reson. Med. 44(4):625–632, 2000.

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Blemker, S. S., and S. L. Delp. Three-dimensional representation of complex muscle architectures and geometries. Ann. Biomed. Eng. 33(5):661–673, 2005.

    Article  PubMed  Google Scholar 

  5. 5.

    Bø, K., F. Lilleas, T. Talseth, and H. Hedland. Dynamic MRI of the pelvic floor muscles in an upright sitting position. Neurourol. Urodyn. 20(2):167–174, 2001.

    Article  PubMed  Google Scholar 

  6. 6.

    Boriek, A. M., W. Hwang, L. Trinh, and J. R. Rodarte. Shape and tension distribution of the active canine diaphragm. Am. J. Physiol. Regul. Integr. Comp. Physiol. 288(4):R1021–R1027, 2005.

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Brandao, S., M. Parente, T. Mascarenhas, A. R. da Silva, I. Ramoss, and R. N. Jorge. Biomechanical study on the bladder neck and urethral positions: simulation of impairment of the pelvic ligaments. J. Biomech. 48(2):217–223, 2015.

    Article  PubMed  Google Scholar 

  8. 8.

    Brandao, F. S., M. P. Parente, P. A. Rocha, M. T. Saraiva, I. M. Ramos, and R. M. Natal. Jorge. Modeling the contraction of the pelvic floor muscles. Comput. Methods Biomech. Biomed. Eng. 19(4):347–356, 2016.

    Article  Google Scholar 

  9. 9.

    Damon, B. M., Z. Ding, A. W. Anderson, A. S. Freyer, and J. C. Gore. Validation of diffusion tensor MRI-based muscle fiber tracking. Magn. Reson. Med. 48(1):97–104, 2002.

    Article  PubMed  Google Scholar 

  10. 10.

    DeLancey, J. O., R. Kearney, Q. Chou, S. Speights, and S. Binno. The appearance of levator ani muscle abnormalities in magnetic resonance images after vaginal delivery. Obstet. Gynecol. 101(1):46–53, 2003.

    PubMed  PubMed Central  Google Scholar 

  11. 11.

    Deux, J. F., P. Malzy, N. Paragios, G. Bassez, A. Luciani, P. Zerbib, F. Roudot-Thoraval, A. Vignaud, H. Kobeiter, and A. Rahmouni. Assessment of calf muscle contraction by diffusion tensor imaging. Eur. Radiol. 18:2303–2310, 2008.

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Fielding, J. R., H. Dumanli, A. G. Schreyer, S. Okuda, D. T. Gering, K. H. Zou, R. Kikinis, and F. A. Jolesz. MR-based three-dimensional modeling of the normal pelvic floor in women: quantification of muscle mass. AJR Am. J. Roentgenol. 174(3):657–660, 2000.

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Froeling, M., A. J. Nederveen, K. Nicolay, and G. J. Strijkers. DTI of human skeletal muscle: the effects of diffusion encoding parameters, signal-to-noise ratio and T2 on tensor indices and fiber tracts. NMR Biomed. 26(11):1339–1352, 2013.

    Article  PubMed  Google Scholar 

  14. 14.

    Gregory, W. T., R. Nardos, T. Worstell, and A. Thurmond. Measuring the levator hiatus with axial MRI sequences: adjusting the angle of acquisition. Neurourol. Urodyn. 30:113–116, 2011.

    Article  PubMed  Google Scholar 

  15. 15.

    Huiskes, H. W., D. Van Campen, and J. R. de Wijn (Ed.). Biomechanics: Principles and Applications. Selected Proceedings of the 3rd General Meeting of the European Society of Biomechanics Nijmegen, The Netherlands, 21–23 January, 1982.

  16. 16.

    Kearney, R., J. M. Miller, J. A. Ashton-Miller, and J. O. DeLancey. Obstetric factors associated with levator ani muscle injury after vaginal birth. Obstet. Gynecol. 107(1):144–149, 2006.

    Article  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Khodaei, H., S. Mostofizadeh, K. Brolin, H. Johansson, and J. Osth. Simulation of active skeletal muscle tissue with a transversely isotropic viscohyperelastic continuum material model. Proc. Inst. Mech. Eng. H. 227(5):571–580, 2013.

    Article  PubMed  Google Scholar 

  18. 18.

    Ling, S., B. Chen, Y. Zhou, W. Z. Yang, Y. Q. Zhao, L. Wang, and Y. P. Zheng. An efficient framework for estimation of muscle fiber orientation using ultrasonography. Biomed. Eng. Online. 2:98, 2013.

    Article  Google Scholar 

  19. 19.

    Manjon, J. V., P. Coupe, L. Concha, A. Buades, D. L. Collins, and M. Robles. Diffusion weighted image denoising using overcomplete local PCA. PLoS ONE 8(9):e73021, 2013.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Margulies, R. U., Y. Hsu, R. Kearney, T. Stein, W. H. Umek, and J. O. DeLancey. Appearance of the levator ani muscle subdivisions in magnetic resonance images. Obstet. Gynecol. 107(5):1064–1069, 2006.

    Article  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Margulies, R. U., M. Huebner, and J. O. DeLancey. Origin and insertion points involved in levator ani muscle defects. Am. J. Obstet. Gynecol. 196(3):251e1–251e5, 2007.

    Article  Google Scholar 

  22. 22.

    Martins, J. A., M. P. Pato, E. B. Pires, R. M. Jorge, M. Parente, and T. Mascarenhas. Finite element studies of the deformation of the pelvic floor. Ann. N. Y. Acad. Sci. 1101:316–334, 2007.

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Mazzoli, V., J. Oudeman, K. Nicolay, M. Maas, N. Verdonschot, A. M. Sprengers, A. J. Nederveen, M. Froeling, and G. J. Strijkers. Assessment of passive muscle elongation using diffusion tensor MRI: correlation between fiber length and diffusion coefficients. NMR Biomed. 2016. doi:10.1002/nbm.3661.

    PubMed  Google Scholar 

  24. 24.

    Noakes, K. F., A. J. Pullan, I. P. Bissett, and L. K. Cheng. Subject specific finite elasticity simulations of the pelvic floor. J. Biomech. 41(14):3060–3065, 2008.

    Article  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Odegard, G. M., T. L. Donahue, D. A. Morrow, and K. R. Kaufman. Constitutive modeling of skeletal muscle tissue with an explicit strain-energy function. J. Biomech. Eng. 130(6):061017, 2008.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Parente, M. P., R. M. Jorge, T. Mascarenhas, A. A. Fernandes, and J. A. Martins. Deformation of the pelvic floor muscles during a vaginal delivery. Int. Urogynecol. J. Pelvic Floor Dysfunct. 19(1):65–71, 2008.

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Parker, G. J. Analysis of MR diffusion weighted images. Br. J. Radiol. 77(Spec No 2):S176–S185, 2004.

    Article  PubMed  Google Scholar 

  28. 28.

    Peng, Y., R. Khavari, N. A. Nakib, T. B. Boone, and Y. Zhang. Assessment of urethral support using MRI-derived computational modeling of the female pelvis. Int. Urogynecol. J. 27(2):205–212, 2016.

    Article  PubMed  Google Scholar 

  29. 29.

    Rousset, P., V. Delmas, J. N. Buy, A. Rahmouni, D. Vadrot, and J. F. Deux. In vivo visualization of the levator ani muscle subdivisions using MR fiber tractography with diffusion tensor imaging. J. Anat. 221(3):221–228, 2012.

    Article  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Saleme, C. S., M. P. Parente, R. M. Natal Jorge, M. Pinotti, A. L. Silva-Filho, T. Roza, T. Mascarenhas, and J. M. Tavares. An approach on determining the displacements of the pelvic floor during voluntary contraction using numerical simulation and MRI. Comput. Methods Biomech. Biomed. Eng. 14(4):365–370, 2011.

    CAS  Article  Google Scholar 

  31. 31.

    Scheel, M., P. von Roth, T. Winkler, A. Arampatzis, T. Prokscha, B. Hamm, and G. Diederichs. Fiber type characterization in skeletal muscle by diffusion tensor imaging. NMR Biomed. 26(10):1220–1224, 2013.

    Article  PubMed  Google Scholar 

  32. 32.

    Schenk, P., T. Siebert, P. Hiepe, D. Güllmar, J. R. Reichenbach, C. Wick, R. Blickhan, and M. Böl. Determination of three-dimensional muscle architectures: validation of the DTI-based fiber tractography method by manual digitization. J. Anat. 223(1):61–68, 2013.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Shobeiri, S. A., R. R. Chesson, and R. F. Gasser. The internal innervation and morphology of the human female levator ani muscle. Am. J. Obstet. Gynecol. 199:681–686, 2008.

    Article  Google Scholar 

  34. 34.

    Sinha, S., U. Sinha, and V. R. Edgerton. In vivo diffusion tensor imaging of the human calf muscle. J. Magn. Reson. Imaging 24(1):182–190, 2006.

    Article  PubMed  Google Scholar 

  35. 35.

    Studholme, C., D. L. G. Hill, and D. J. Hawkes. An overlap invariant entropy measure of 3D medical image alignment. Pattern Recogn. 32(1):71–86, 1999.

    Article  Google Scholar 

  36. 36.

    Tamanini, J. T., M. Dambros, C. A. D’Ancona, P. C. Palma, and N. Rodrigues Netto, Jr. Validation of the “International Consultation on Incontinence Questionnaire—Short Form” (ICIQ-SF) for Portuguese. Rev. Saude Publica 38(3):438–444, 2004.

    Article  PubMed  Google Scholar 

  37. 37.

    Tans, T., P. Apinuntrum, T. Phetudom, and P. Phanchart. New insights into the pelvic organ support framework. Eur. J. Obstet. Gynecol. Reprod. Biol. 166(2):221–225, 2013.

    Article  Google Scholar 

  38. 38.

    Trivedi, R., R. K. S. Rathore, and R. K. Gupta. Review: clinical application of diffusion tensor imaging. Indian J. Radiol. Imaging. 18(1):45–52, 2006.

    Google Scholar 

  39. 39.

    Van Donkelaar, C. C., L. J. Kretzers, P. H. Bovendeerd, L. M. Lataster, K. Nicolay, J. D. Janssen, and M. R. Drost. Diffusion tensor imaging in biomechanical studies of skeletal muscle function. J. Anat. 194(Pt 1):79–88, 1999.

    Article  PubMed  Google Scholar 

  40. 40.

    Van Doorn, A., P. H. Bovendeerd, K. Nicolay, M. R. Drost, and J. D. Janssen. Determination of muscle fibre orientation using diffusion-weighted MRI. Eur. J. Morphol. 34(1):5–10, 1996.

    Article  PubMed  Google Scholar 

  41. 41.

    Walton, C., Z. Li, A. Pennings, A. Agur, and A. Elmaraghy. A 3-Dimensional anatomic study of the distal biceps tendon. Orthop. J. Sports Med. 3(6):2325967115585113, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Whitcher, B., D. S. Tuch, J. J. Wisco, A. G. Sorensen, and L. Wang. Using the wild bootstrap to quantify uncertainty in diffusion tensor imaging. Hum. Brain Mapp. 29(3):346–362, 2008.

    Article  PubMed  Google Scholar 

  43. 43.

    Zijta, F. M., M. Froeling, M. P. van der Paardt, M. M. Lakeman, S. Bipat, A. D. van Swijndregt, G. J. Strijkers, A. J. Nederveen, and J. Stoker. Feasibility of diffusion tensor imaging (DTI) with fibre tractography of the normal female pelvic floor. Eur. Radiol. 21(6):1243–1249, 2011.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Zijta, F. M., M. M. Lakeman, M. Froeling, M. P. van der Paardt, C. S. Borstlap, S. Bipat, A. D. M. van Swijndregt, G. J. Strijkers, J. P. Roovers, A. J. Nederveen, and J. Stoker. Evaluation of the female pelvic floor in pelvic organ prolapse using 3.0-Tesla diffusion tensor imaging and fibre tractography. Eur. Radiol. 22(12):2806–2813, 2012.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement

TR acknowledges the funding by CNPq (Grant No. 314649/2014-0) from Brazil government. The authors also acknowledge the funding of the Research Project UID/EMS/50022/2013, from Fundação da Ciência e Tecnologia (FCT), Portugal, and Project NORTE-01-0145-FEDER-000022-SciTech-Science and Technology for Competitive and Sustainable Industries, co-financed by Programa Operacional Regional do Norte (NORTE2020), through Fundo Europeu de Desenvolvimento Regional (FEDER). RGN acknowledges funding by the FCT Investigator Program (IF/00364/2013).

Conflict of interest

The authors declare that there is no conflict of interest.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sofia Brandão.

Additional information

Associate Editor Estefania Pena oversaw the review of this article.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Brandão, S., Parente, M., Silva, E. et al. Pubovisceralis Muscle Fiber Architecture Determination: Comparison Between Biomechanical Modeling and Diffusion Tensor Imaging. Ann Biomed Eng 45, 1255–1265 (2017). https://doi.org/10.1007/s10439-016-1788-y

Download citation

Keywords

  • Pelvic floor muscles
  • Magnetic resonance diffusion tensor imaging
  • Computational biomechanics
  • Finite element method