Skip to main content
Log in

A Tri-Leaflet Nitinol Mesh Scaffold for Engineering Heart Valves

  • The Pursuit of Engineering the Ideal Heart Valve Replacement or Repair
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The epidemiology of valvular heart disease has significantly changed in the past few decades with aging as one of the main contributing factors. The available options for replacement of diseased valves are currently limited to mechanical and bioprosthetic valves, while the tissue engineered ones that are under study are currently far from clinical approval. The main problem with the tissue engineered heart valves is their progressive deterioration that leads to regurgitation and/or leaflet thickening a few months after implantation. The use of bioresorbable scaffolds is speculated to be one factor affecting these valves’ failure. We have previously developed a non-degradable superelastic nitinol mesh scaffold concept that can be used for heart valve tissue engineering applications. It is hypothesized that the use of a non-degradable superelastic nitinol mesh may increase the durability of tissue engineered heart valves, avoid their shrinkage, and accordingly prevent regurgitation. The current work aims to study the effects of the design features on mechanical characteristics of this valve scaffold to attain proper function prior to in vivo implantation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Alavi, S. H., and A. Kheradvar. Metal mesh scaffold for tissue engineering of membranes. Tissue Eng. Part C Methods 18:293–301, 2011.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Alavi, S. H., and A. Kheradvar. A hybrid tissue-engineered heart valve. Ann. Thoracic Surg. 99:2183–2187, 2015.

    Article  Google Scholar 

  3. Alavi, S. H., W. F. Liu, and A. Kheradvar. Inflammatory response assessment of a hybrid tissue-engineered heart valve leaflet. Ann. Biomed. Eng. 41:316–326, 2013.

    Article  PubMed  Google Scholar 

  4. Andreassen, E., and C. S. Andreasen. How to determine composite material properties using numerical homogenization. Comput. Mater. Sci. 83:488–495, 2014.

    Article  Google Scholar 

  5. Bouten, C., P. Dankers, A. Driessen-Mol, S. Pedron, A. Brizard, and F. Baaijens. Substrates for cardiovascular tissue engineering. Adv. Drug Deliv. Rev. 63:221–241, 2011.

    Article  CAS  PubMed  Google Scholar 

  6. Cataloglu, A., R. E. Clark, and P. L. Gould. Stress analysis of aortic valve leaflets with smoothed geometrical data. J. Biomech. 10:153–158, 1977.

    Article  CAS  PubMed  Google Scholar 

  7. Coble, S. Materials Data Book. Cambridge: Cambridge University Engineering Department, 2003.

    Google Scholar 

  8. Database JMC. An overview of nitinol: Superelastic and shape memory. Medical Design Briefs. 2015

  9. Driessen-Mol, A., M. Y. Emmert, P. E. Dijkman, L. Frese, B. Sanders, B. Weber, N. Cesarovic, M. Sidler, J. Leenders, and R. Jenni. Transcatheter implantation of homologous “off-the-shelf” tissue-engineered heart valves with self-repair capacity: long-term functionality and rapid in vivo remodeling in sheep. J. Am. Coll. Cardiol. 63:1320–1329, 2014.

    Article  PubMed  Google Scholar 

  10. Falahapisheh, A., and A. Kheradvar. High-speed particle image velocimetry to assess cardiac fluid dynamics in vitro: From performance to validation. Eur. J. Mech. B/Fluids 35:2–8, 2012.

    Article  Google Scholar 

  11. Fan, R., A. S. Bayoumi, P. Chen, C. M. Hobson, W. R. Wagner, J. E. Mayer, and M. S. Sacks. Optimal elastomeric scaffold leaflet shape for pulmonary heart valve leaflet replacement. J. Biomech. 46:662–669, 2013.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Flanagan, T. C., J. S. Sachweh, J. Frese, H. Schnöring, N. Gronloh, S. Koch, R. H. Tolba, T. Schmitz-Rode, and S. Jockenhoevel. in vivo remodeling and structural characterization of fibrin-based tissue-engineered heart valves in the adult sheep model. Tissue Eng. Part A 15:2965–2976, 2009.

    Article  CAS  PubMed  Google Scholar 

  13. Garcia, D., P. Pibarot, C. Landry, A. Allard, B. Chayer, J. G. Dumesnil, and L.-G. Durand. Estimation of aortic valve effective orifice area by doppler echocardiography: effects of valve inflow shape and flow rate. J. Am. Soc. Echocardiogr. 17:756–765, 2004.

    Article  PubMed  Google Scholar 

  14. Gerosa, G., V. Tarzia, G. Rizzoli, and T. Bottio. Small aortic annulus: the hydrodynamic performances of 5 commercially available tissue valves. J. Thoracic Cardiovasc. Surg. 131(1058–1064):e1052, 2006.

    Google Scholar 

  15. Hoerstrup, S. P., R. Sodian, S. Daebritz, J. Wang, E. A. Bacha, D. P. Martin, A. M. Moran, K. J. Guleserian, J. S. Sperling, and S. Kaushal. Functional living trileaflet heart valves grown in vitro. Circulation 102:Iii-44–Iii-49, 2000.

    Article  CAS  Google Scholar 

  16. Kheradvar, A., E. M. Groves, L. P. Dasi, S. H. Alavi, R. Tranquillo, K. J. Grande-Allen, C. A. Simmons, B. Griffith, A. Falahatpisheh, and C. J. Goergen. Emerging trends in heart valve engineering: part I. Solutions for future. Ann. Biomed. Eng. 43:833–843, 2015.

    Article  PubMed  Google Scholar 

  17. Kheradvar, A., E. M. Groves, A. Falahatpisheh, M. K. Mofrad, S. H. Alavi, R. Tranquillo, L. P. Dasi, C. A. Simmons, K. J. Grande-Allen, and C. J. Goergen. Emerging trends in heart valve engineering: part IV. Computational modeling and experimental studies. Ann. Biomed. Eng. 43:2314–2333, 2015.

    Article  PubMed  Google Scholar 

  18. Kunzelman, K., R. Cochran, C. Chuong, W. Ring, E. Verrier, and R. Eberhart. Finite element analysis of the mitral valve. J. Heart Valve Dis. 2:326–340, 1993.

    CAS  PubMed  Google Scholar 

  19. Labrosse, M. R., C. J. Beller, F. Robicsek, and M. J. Thubrikar. Geometric modeling of functional trileaflet aortic valves: Development and clinical applications. J. Biomech. 39:2665–2672, 2006.

    Article  PubMed  Google Scholar 

  20. Loerakker, S., G. Argento, C. W. Oomens, and F. P. Baaijens. Effects of valve geometry and tissue anisotropy on the radial stretch and coaptation area of tissue-engineered heart valves. J. Biomech. 46:1792–1800, 2013.

    Article  CAS  PubMed  Google Scholar 

  21. Loger, K., A. Engel, J. Haupt, R. L. de Miranda, G. Lutter, and E. Quandt. Microstructured nickel-titanium thin film leaflets for hybrid tissue engineered heart valves fabricated by magnetron sputter deposition. Cardiovasc. Eng. Technol. 7:69–77, 2016.

    Article  CAS  PubMed  Google Scholar 

  22. McKelvey, A., and R. Ritchie. Fatigue-crack propagation in nitinol, a shape-memory and superelastic endovascular stent material. J. Biomed. Mater. Res. 47:301–308, 1999.

    Article  CAS  PubMed  Google Scholar 

  23. Mol, A., A. I. Smits, C. V. Bouten, and F. P. Baaijens. Tissue engineering of heart valves: advances and current challenges. Exp. Rev. Med. Dev. 6:259–275, 2009.

    Article  CAS  Google Scholar 

  24. Mozaffarian, D., E. J. Benjamin, A. S. Go, D. K. Arnett, M. J. Blaha, M. Cushman, S. R. Das, S. de Ferranti, J.-P. Després, and H. J. Fullerton. Heart disease and stroke statistics—2016 update a report from the American heart association. Circulation 133(4):447, 2015; (CIR. 0000000000000350).

    Article  Google Scholar 

  25. Pouch, A. M., C. Xu, P. A. Yushkevich, A. S. Jassar, M. Vergnat, J. H. Gorman, R. C. Gorman, C. M. Sehgal, and B. M. Jackson. Semi-automated mitral valve morphometry and computational stress analysis using 3d ultrasound. J. Biomech. 45:903–907, 2012.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Prot, V., B. Skallerud, G. Sommer, and G. A. Holzapfel. On modelling and analysis of healthy and pathological human mitral valves: two case studies. J. Mech. Behav. Biomed. Mater. 3:167–177, 2010.

    Article  CAS  PubMed  Google Scholar 

  27. Reimer, J., Z. Syedain, B. Haynie, M. Lahti, J. Berry, and R. Tranquillo. Implantation of a tissue-engineered tubular heart valve in growing lambs. Ann Biomed Eng 2016. doi:10.1007/s10439-016-1605-7.

    PubMed  Google Scholar 

  28. Reshetov, I., O. Starceva, A. Istranov, B. Vorona, A. Lyundup, I. Gulyaev, D. Melnikov, D. Shtansky, A. Sheveyko, V. Andreev. Three-dimensional biocompatible matrix for reconstructive surgery. Physics Of Cancer: Interdisciplinary Problems And Clinical Applications (Pc’16): Proceedings of the International Conference on Physics of Cancer: Interdisciplinary Problems and Clinical Applications 2016. 1760: 020056, 2016.

  29. Robertson, S., A. Pelton, and R. Ritchie. Mechanical fatigue and fracture of nitinol. Int. Mater. Rev. 57:1–37, 2012.

    Article  CAS  Google Scholar 

  30. Ruiz, C. E., M. Iemura, S. Medie, P. Varga, W. G. Van Alstine, S. Mack, A. Deligio, N. Fearnot, U. H. Beier, and D. Pavcnik. Transcatheter placement of a low-profile biodegradable pulmonary valve made of small intestinal submucosa: a long-term study in a swine model. J. Thorac Cardiovasc. Surg. 130:e471–e477, 2005.

    Article  Google Scholar 

  31. Sanders, B., S. Loerakker, E. S. Fioretta, D. J. Bax, A. Driessen-Mol, S. P. Hoerstrup, and F. P. Baaijens. Improved geometry of decellularized tissue engineered heart valves to prevent leaflet retraction. Ann. Biomed. Eng. 44:1061–1071, 2016.

    Article  PubMed  Google Scholar 

  32. Schmidt, D., P. E. Dijkman, A. Driessen-Mol, R. Stenger, C. Mariani, A. Puolakka, M. Rissanen, T. Deichmann, B. Odermatt, and B. Weber. Minimally-invasive implantation of living tissue engineered heart valves: a comprehensive approach from autologous vascular cells to stem cells. J. Am. Coll. Cardiol. 56:510–520, 2010.

    Article  PubMed  Google Scholar 

  33. Shinoka, T., C. K. Breuer, R. E. Tanel, G. Zund, T. Miura, P. X. Ma, R. Langer, J. P. Vacanti, and J. E. Mayer. Tissue engineering heart valves: valve leaflet replacement study in a lamb model. Ann. Thorac. Surg. 60:S513–S516, 1995.

    Article  CAS  PubMed  Google Scholar 

  34. Shinoka, T., P. X. Ma, D. Shum-Tim, C. K. Breuer, R. A. Cusick, G. Zund, R. Langer, J. P. Vacanti, and J. E. Mayer, Jr. Tissue-engineered heart valves. Autologous valve leaflet replacement study in a lamb model. Circulation 94:II164–II168, 1996.

    CAS  PubMed  Google Scholar 

  35. Šittner, P., L. Heller, J. Pilch, C. Curfs, T. Alonso, and D. Favier. Young’s modulus of austenite and martensite phases in superelastic niti wires. J. Mater. Eng. Perform. 23:2303–2314, 2014.

    Article  Google Scholar 

  36. Sun, W., A. Abad, and M. S. Sacks. Simulated bioprosthetic heart valve deformation under quasi-static loading. J. Biomech. Eng. 127:905–914, 2005.

    Article  PubMed  Google Scholar 

  37. Sutherland, F. W., T. E. Perry, Y. Yu, M. C. Sherwood, E. Rabkin, Y. Masuda, G. A. Garcia, D. L. McLellan, G. C. Engelmayr, and M. S. Sacks. From stem cells to viable autologous semilunar heart valve. Circulation 111:2783–2791, 2005.

    Article  PubMed  Google Scholar 

  38. Swanson, W. M., and R. E. Clark. Dimensions and geometric relationships of the human aortic value as a function of pressure. Circ. Res. 35:871–882, 1974.

    Article  CAS  PubMed  Google Scholar 

  39. Syedain, Z. H., M. T. Lahti, S. L. Johnson, P. S. Robinson, G. R. Ruth, R. W. Bianco, and R. T. Tranquillo. Implantation of a tissue-engineered heart valve from human fibroblasts exhibiting short term function in the sheep pulmonary artery. Cardiovasc. Eng. Technol. 2:101–112, 2011.

    Article  Google Scholar 

  40. Syedain, Z., J. Reimer, J. Schmidt, M. Lahti, J. Berry, R. Bianco, and R. T. Tranquillo. 6-month aortic valve implantation of an off-the-shelf tissue-engineered valve in sheep. Biomaterials 73:175–184, 2015.

    Article  CAS  PubMed  Google Scholar 

  41. Thubrikar, M., W. C. Piepgrass, T. W. Shaner, and S. P. Nolan. The design of the normal aortic valve. Am. J. Physiol. Heart Circ. Physiol. 241:H795–H801, 1981.

    CAS  Google Scholar 

  42. Wang, Q., and W. Sun. Finite element modeling of mitral valve dynamic deformation using patient-specific multi-slices computed tomography scans. Ann. Biomed. Eng. 41:142–153, 2013.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from Children’s Heart Foundation to Prof. Kheradvar and a postdoctoral grant from American Heart Association (16POST27540025) to Dr. Alavi. There are no financial disclosures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arash Kheradvar.

Additional information

Associate Editor Jane Grande-Allen oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alavi, S.H., Soriano Baliarda, M., Bonessio, N. et al. A Tri-Leaflet Nitinol Mesh Scaffold for Engineering Heart Valves. Ann Biomed Eng 45, 413–426 (2017). https://doi.org/10.1007/s10439-016-1778-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-016-1778-0

Keywords

Navigation