Annals of Biomedical Engineering

, Volume 45, Issue 2, pp 413–426 | Cite as

A Tri-Leaflet Nitinol Mesh Scaffold for Engineering Heart Valves

  • S. Hamed Alavi
  • Marc Soriano Baliarda
  • Noemi Bonessio
  • Lorenzo Valdevit
  • Arash Kheradvar
The Pursuit of Engineering the Ideal Heart Valve Replacement or Repair

Abstract

The epidemiology of valvular heart disease has significantly changed in the past few decades with aging as one of the main contributing factors. The available options for replacement of diseased valves are currently limited to mechanical and bioprosthetic valves, while the tissue engineered ones that are under study are currently far from clinical approval. The main problem with the tissue engineered heart valves is their progressive deterioration that leads to regurgitation and/or leaflet thickening a few months after implantation. The use of bioresorbable scaffolds is speculated to be one factor affecting these valves’ failure. We have previously developed a non-degradable superelastic nitinol mesh scaffold concept that can be used for heart valve tissue engineering applications. It is hypothesized that the use of a non-degradable superelastic nitinol mesh may increase the durability of tissue engineered heart valves, avoid their shrinkage, and accordingly prevent regurgitation. The current work aims to study the effects of the design features on mechanical characteristics of this valve scaffold to attain proper function prior to in vivo implantation.

Keywords

Nitinol mesh Heart valve Scaffold Non-degradable Hybrid heart valve Hybrid tissue engineering approach Computational modeling 

References

  1. 1.
    Alavi, S. H., and A. Kheradvar. Metal mesh scaffold for tissue engineering of membranes. Tissue Eng. Part C Methods 18:293–301, 2011.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Alavi, S. H., and A. Kheradvar. A hybrid tissue-engineered heart valve. Ann. Thoracic Surg. 99:2183–2187, 2015.CrossRefGoogle Scholar
  3. 3.
    Alavi, S. H., W. F. Liu, and A. Kheradvar. Inflammatory response assessment of a hybrid tissue-engineered heart valve leaflet. Ann. Biomed. Eng. 41:316–326, 2013.CrossRefPubMedGoogle Scholar
  4. 4.
    Andreassen, E., and C. S. Andreasen. How to determine composite material properties using numerical homogenization. Comput. Mater. Sci. 83:488–495, 2014.CrossRefGoogle Scholar
  5. 5.
    Bouten, C., P. Dankers, A. Driessen-Mol, S. Pedron, A. Brizard, and F. Baaijens. Substrates for cardiovascular tissue engineering. Adv. Drug Deliv. Rev. 63:221–241, 2011.CrossRefPubMedGoogle Scholar
  6. 6.
    Cataloglu, A., R. E. Clark, and P. L. Gould. Stress analysis of aortic valve leaflets with smoothed geometrical data. J. Biomech. 10:153–158, 1977.CrossRefPubMedGoogle Scholar
  7. 7.
    Coble, S. Materials Data Book. Cambridge: Cambridge University Engineering Department, 2003.Google Scholar
  8. 8.
    Database JMC. An overview of nitinol: Superelastic and shape memory. Medical Design Briefs. 2015Google Scholar
  9. 9.
    Driessen-Mol, A., M. Y. Emmert, P. E. Dijkman, L. Frese, B. Sanders, B. Weber, N. Cesarovic, M. Sidler, J. Leenders, and R. Jenni. Transcatheter implantation of homologous “off-the-shelf” tissue-engineered heart valves with self-repair capacity: long-term functionality and rapid in vivo remodeling in sheep. J. Am. Coll. Cardiol. 63:1320–1329, 2014.CrossRefPubMedGoogle Scholar
  10. 10.
    Falahapisheh, A., and A. Kheradvar. High-speed particle image velocimetry to assess cardiac fluid dynamics in vitro: From performance to validation. Eur. J. Mech. B/Fluids 35:2–8, 2012.CrossRefGoogle Scholar
  11. 11.
    Fan, R., A. S. Bayoumi, P. Chen, C. M. Hobson, W. R. Wagner, J. E. Mayer, and M. S. Sacks. Optimal elastomeric scaffold leaflet shape for pulmonary heart valve leaflet replacement. J. Biomech. 46:662–669, 2013.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Flanagan, T. C., J. S. Sachweh, J. Frese, H. Schnöring, N. Gronloh, S. Koch, R. H. Tolba, T. Schmitz-Rode, and S. Jockenhoevel. in vivo remodeling and structural characterization of fibrin-based tissue-engineered heart valves in the adult sheep model. Tissue Eng. Part A 15:2965–2976, 2009.CrossRefPubMedGoogle Scholar
  13. 13.
    Garcia, D., P. Pibarot, C. Landry, A. Allard, B. Chayer, J. G. Dumesnil, and L.-G. Durand. Estimation of aortic valve effective orifice area by doppler echocardiography: effects of valve inflow shape and flow rate. J. Am. Soc. Echocardiogr. 17:756–765, 2004.CrossRefPubMedGoogle Scholar
  14. 14.
    Gerosa, G., V. Tarzia, G. Rizzoli, and T. Bottio. Small aortic annulus: the hydrodynamic performances of 5 commercially available tissue valves. J. Thoracic Cardiovasc. Surg. 131(1058–1064):e1052, 2006.Google Scholar
  15. 15.
    Hoerstrup, S. P., R. Sodian, S. Daebritz, J. Wang, E. A. Bacha, D. P. Martin, A. M. Moran, K. J. Guleserian, J. S. Sperling, and S. Kaushal. Functional living trileaflet heart valves grown in vitro. Circulation 102:Iii-44–Iii-49, 2000.CrossRefGoogle Scholar
  16. 16.
    Kheradvar, A., E. M. Groves, L. P. Dasi, S. H. Alavi, R. Tranquillo, K. J. Grande-Allen, C. A. Simmons, B. Griffith, A. Falahatpisheh, and C. J. Goergen. Emerging trends in heart valve engineering: part I. Solutions for future. Ann. Biomed. Eng. 43:833–843, 2015.CrossRefPubMedGoogle Scholar
  17. 17.
    Kheradvar, A., E. M. Groves, A. Falahatpisheh, M. K. Mofrad, S. H. Alavi, R. Tranquillo, L. P. Dasi, C. A. Simmons, K. J. Grande-Allen, and C. J. Goergen. Emerging trends in heart valve engineering: part IV. Computational modeling and experimental studies. Ann. Biomed. Eng. 43:2314–2333, 2015.CrossRefPubMedGoogle Scholar
  18. 18.
    Kunzelman, K., R. Cochran, C. Chuong, W. Ring, E. Verrier, and R. Eberhart. Finite element analysis of the mitral valve. J. Heart Valve Dis. 2:326–340, 1993.PubMedGoogle Scholar
  19. 19.
    Labrosse, M. R., C. J. Beller, F. Robicsek, and M. J. Thubrikar. Geometric modeling of functional trileaflet aortic valves: Development and clinical applications. J. Biomech. 39:2665–2672, 2006.CrossRefPubMedGoogle Scholar
  20. 20.
    Loerakker, S., G. Argento, C. W. Oomens, and F. P. Baaijens. Effects of valve geometry and tissue anisotropy on the radial stretch and coaptation area of tissue-engineered heart valves. J. Biomech. 46:1792–1800, 2013.CrossRefPubMedGoogle Scholar
  21. 21.
    Loger, K., A. Engel, J. Haupt, R. L. de Miranda, G. Lutter, and E. Quandt. Microstructured nickel-titanium thin film leaflets for hybrid tissue engineered heart valves fabricated by magnetron sputter deposition. Cardiovasc. Eng. Technol. 7:69–77, 2016.CrossRefPubMedGoogle Scholar
  22. 22.
    McKelvey, A., and R. Ritchie. Fatigue-crack propagation in nitinol, a shape-memory and superelastic endovascular stent material. J. Biomed. Mater. Res. 47:301–308, 1999.CrossRefPubMedGoogle Scholar
  23. 23.
    Mol, A., A. I. Smits, C. V. Bouten, and F. P. Baaijens. Tissue engineering of heart valves: advances and current challenges. Exp. Rev. Med. Dev. 6:259–275, 2009.CrossRefGoogle Scholar
  24. 24.
    Mozaffarian, D., E. J. Benjamin, A. S. Go, D. K. Arnett, M. J. Blaha, M. Cushman, S. R. Das, S. de Ferranti, J.-P. Després, and H. J. Fullerton. Heart disease and stroke statistics—2016 update a report from the American heart association. Circulation 133(4):447, 2015; (CIR. 0000000000000350).CrossRefGoogle Scholar
  25. 25.
    Pouch, A. M., C. Xu, P. A. Yushkevich, A. S. Jassar, M. Vergnat, J. H. Gorman, R. C. Gorman, C. M. Sehgal, and B. M. Jackson. Semi-automated mitral valve morphometry and computational stress analysis using 3d ultrasound. J. Biomech. 45:903–907, 2012.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Prot, V., B. Skallerud, G. Sommer, and G. A. Holzapfel. On modelling and analysis of healthy and pathological human mitral valves: two case studies. J. Mech. Behav. Biomed. Mater. 3:167–177, 2010.CrossRefPubMedGoogle Scholar
  27. 27.
    Reimer, J., Z. Syedain, B. Haynie, M. Lahti, J. Berry, and R. Tranquillo. Implantation of a tissue-engineered tubular heart valve in growing lambs. Ann Biomed Eng 2016. doi:10.1007/s10439-016-1605-7.PubMedGoogle Scholar
  28. 28.
    Reshetov, I., O. Starceva, A. Istranov, B. Vorona, A. Lyundup, I. Gulyaev, D. Melnikov, D. Shtansky, A. Sheveyko, V. Andreev. Three-dimensional biocompatible matrix for reconstructive surgery. Physics Of Cancer: Interdisciplinary Problems And Clinical Applications (Pc’16): Proceedings of the International Conference on Physics of Cancer: Interdisciplinary Problems and Clinical Applications 2016. 1760: 020056, 2016.Google Scholar
  29. 29.
    Robertson, S., A. Pelton, and R. Ritchie. Mechanical fatigue and fracture of nitinol. Int. Mater. Rev. 57:1–37, 2012.CrossRefGoogle Scholar
  30. 30.
    Ruiz, C. E., M. Iemura, S. Medie, P. Varga, W. G. Van Alstine, S. Mack, A. Deligio, N. Fearnot, U. H. Beier, and D. Pavcnik. Transcatheter placement of a low-profile biodegradable pulmonary valve made of small intestinal submucosa: a long-term study in a swine model. J. Thorac Cardiovasc. Surg. 130:e471–e477, 2005.CrossRefGoogle Scholar
  31. 31.
    Sanders, B., S. Loerakker, E. S. Fioretta, D. J. Bax, A. Driessen-Mol, S. P. Hoerstrup, and F. P. Baaijens. Improved geometry of decellularized tissue engineered heart valves to prevent leaflet retraction. Ann. Biomed. Eng. 44:1061–1071, 2016.CrossRefPubMedGoogle Scholar
  32. 32.
    Schmidt, D., P. E. Dijkman, A. Driessen-Mol, R. Stenger, C. Mariani, A. Puolakka, M. Rissanen, T. Deichmann, B. Odermatt, and B. Weber. Minimally-invasive implantation of living tissue engineered heart valves: a comprehensive approach from autologous vascular cells to stem cells. J. Am. Coll. Cardiol. 56:510–520, 2010.CrossRefPubMedGoogle Scholar
  33. 33.
    Shinoka, T., C. K. Breuer, R. E. Tanel, G. Zund, T. Miura, P. X. Ma, R. Langer, J. P. Vacanti, and J. E. Mayer. Tissue engineering heart valves: valve leaflet replacement study in a lamb model. Ann. Thorac. Surg. 60:S513–S516, 1995.CrossRefPubMedGoogle Scholar
  34. 34.
    Shinoka, T., P. X. Ma, D. Shum-Tim, C. K. Breuer, R. A. Cusick, G. Zund, R. Langer, J. P. Vacanti, and J. E. Mayer, Jr. Tissue-engineered heart valves. Autologous valve leaflet replacement study in a lamb model. Circulation 94:II164–II168, 1996.PubMedGoogle Scholar
  35. 35.
    Šittner, P., L. Heller, J. Pilch, C. Curfs, T. Alonso, and D. Favier. Young’s modulus of austenite and martensite phases in superelastic niti wires. J. Mater. Eng. Perform. 23:2303–2314, 2014.CrossRefGoogle Scholar
  36. 36.
    Sun, W., A. Abad, and M. S. Sacks. Simulated bioprosthetic heart valve deformation under quasi-static loading. J. Biomech. Eng. 127:905–914, 2005.CrossRefPubMedGoogle Scholar
  37. 37.
    Sutherland, F. W., T. E. Perry, Y. Yu, M. C. Sherwood, E. Rabkin, Y. Masuda, G. A. Garcia, D. L. McLellan, G. C. Engelmayr, and M. S. Sacks. From stem cells to viable autologous semilunar heart valve. Circulation 111:2783–2791, 2005.CrossRefPubMedGoogle Scholar
  38. 38.
    Swanson, W. M., and R. E. Clark. Dimensions and geometric relationships of the human aortic value as a function of pressure. Circ. Res. 35:871–882, 1974.CrossRefPubMedGoogle Scholar
  39. 39.
    Syedain, Z. H., M. T. Lahti, S. L. Johnson, P. S. Robinson, G. R. Ruth, R. W. Bianco, and R. T. Tranquillo. Implantation of a tissue-engineered heart valve from human fibroblasts exhibiting short term function in the sheep pulmonary artery. Cardiovasc. Eng. Technol. 2:101–112, 2011.CrossRefGoogle Scholar
  40. 40.
    Syedain, Z., J. Reimer, J. Schmidt, M. Lahti, J. Berry, R. Bianco, and R. T. Tranquillo. 6-month aortic valve implantation of an off-the-shelf tissue-engineered valve in sheep. Biomaterials 73:175–184, 2015.CrossRefPubMedGoogle Scholar
  41. 41.
    Thubrikar, M., W. C. Piepgrass, T. W. Shaner, and S. P. Nolan. The design of the normal aortic valve. Am. J. Physiol. Heart Circ. Physiol. 241:H795–H801, 1981.Google Scholar
  42. 42.
    Wang, Q., and W. Sun. Finite element modeling of mitral valve dynamic deformation using patient-specific multi-slices computed tomography scans. Ann. Biomed. Eng. 41:142–153, 2013.CrossRefPubMedGoogle Scholar

Copyright information

© Biomedical Engineering Society 2016

Authors and Affiliations

  1. 1.The Edwards Lifesciences Center for Advanced Cardiovascular TechnologyUniversity of California, IrvineIrvineUSA
  2. 2.Department of Biomedical EngineeringUniversity of California, IrvineIrvineUSA
  3. 3.Department of Mechanical and Aerospace EngineeringUniversity of California, IrvineIrvineUSA

Personalised recommendations