Advertisement

Annals of Biomedical Engineering

, Volume 45, Issue 4, pp 1003–1014 | Cite as

Alginate-Chitosan Hydrogels Provide a Sustained Gradient of Sphingosine-1-Phosphate for Therapeutic Angiogenesis

  • Priscilla A. Williams
  • Kevin T. Campbell
  • Hessam Gharaviram
  • Justin L. Madrigal
  • Eduardo A. SilvaEmail author
Article

Abstract

Sphingosine-1-phosphate (S1P), a bioactive lipid, is a potent candidate for treatment of ischemic vascular disease. However, designing biomaterial systems for the controlled release of S1P to achieve therapeutic angiogenesis presents both biological and engineering challenges. Thus, the objective of this study was to design a hydrogel system that provides controlled and sustained release of S1P to establish local concentration gradients that promote neovascularization. Alginate hydrogels have been extensively studied and characterized for delivery of proangiogenic factors. We sought to explore if chitosan (0, 0.1, 0.5, or 1%) incorporation could be used as a means to control S1P release from alginate hydrogels. With increasing chitosan incorporation, hydrogels exhibited significantly denser pore structure and stiffer material properties. While 0.1 and 0.5% chitosan gels demonstrated slower respective release of S1P, release from 1% chitosan gels was similar to alginate gels alone. Furthermore, 0.5% chitosan gels induced greater sprouting and directed migration of outgrowth endothelial cells (OECs) in response to released S1P under hypoxia in vitro. Overall, this report presents a platform for a novel alginate-chitosan hydrogel of controlled composition and in situ gelation properties that can be used to control lipid release for therapeutic applications.

Keywords

Composite hydrogel Controlled release Lipid Outgrowth endothelial cell Homing Proangiogenic factors Sphingosine-1-phosphate (S1P) 

Notes

Acknowledgements

We thank the American Heart Association (15BGIA25730057 and 15PRE22930044) and the Hellman Family for the funding support for this work. We also acknowledge Dr. J. Kent Leach and Dr. Scott Simon for the use of their equipment in acquiring this data. We thank Fred Hayes and the UC Davis Advanced Materials Characterization and Testing (AMCAT) facility for guidance with SEM imaging.

References

  1. 1.
    Anderson, E. M., and D. J. Mooney. The combination of vascular endothelial growth factor and stromal cell-derived factor induces superior angiogenic sprouting by outgrowth endothelial cells. J. Vasc. Res. 52:62–69, 2015.CrossRefPubMedGoogle Scholar
  2. 2.
    Baysal, K., A. Z. Aroguz, Z. Adiguzel, and B. M. Baysal. Chitosan/alginate crosslinked hydrogels: Preparation, characterization and application for cell growth purposes. Int. J. Biol. Macromol. 59:342–348, 2013.CrossRefPubMedGoogle Scholar
  3. 3.
    Bencherif, S. A., R. Warren Sands, O. A. Ali, W. A. Li, S. A. Lewin, T. M. Braschler, T. Y. Shih, C. S. Verbeke, D. Bhatta, G. Dranoff, and D. J. Mooney. Injectable cryogel-based whole-cell cancer vaccines. Nat. Commun. 6:7556, 2015.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Bidarra, S. J., C. C. Barrias, K. B. Fonseca, M. A. Barbosa, R. A. Soares, and P. L. Granja. Injectable in situ crosslinkable rgd-modified alginate matrix for endothelial cells delivery. Biomaterials 32:7897–7904, 2011.CrossRefPubMedGoogle Scholar
  5. 5.
    Binder, B., P. Williams, E. Silva, and J. K. Leach. Lysophosphatidic acid and sphingosine-1-phosphate: A concise review of biological function and applications for tissue engineering. Tissue Eng. Part B Rev. 21:531–542, 2015.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Boontheekul, T., H. J. Kong, and D. J. Mooney. Controlling alginate gel degradation utilizing partial oxidation and bimodal molecular weight distribution. Biomaterials 26:2455–2465, 2005.CrossRefPubMedGoogle Scholar
  7. 7.
    Bronckaers, A., P. Hilkens, Y. Fanton, T. Struys, P. Gervois, C. Politis, W. Martens, and I. Lambrichts. Angiogenic properties of human dental pulp stem cells. PLoS One 8:e71104, 2013.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Das, R. K., N. Kasoju, and U. Bora. Encapsulation of curcumin in alginate-chitosan-pluronic composite nanoparticles for delivery to cancer cells. Nanomedicine 6:153–160, 2010.CrossRefPubMedGoogle Scholar
  9. 9.
    Gaserod, O., O. Smidsrod, and G. Skjak-Braek. Microcapsules of alginate-chitosan—I. A quantitative study of the interaction between alginate and chitosan. Biomaterials 19:1815–1825, 1998.CrossRefPubMedGoogle Scholar
  10. 10.
    Hao, X., E. A. Silva, A. Mansson-Broberg, K. H. Grinnemo, A. J. Siddiqui, G. Dellgren, E. Wardell, L. A. Brodin, D. J. Mooney, and C. Sylven. Angiogenic effects of sequential release of vegf-a165 and pdgf-bb with alginate hydrogels after myocardial infarction. Cardiovasc. Res. 75:178–185, 2007.CrossRefPubMedGoogle Scholar
  11. 11.
    Huguet, M. L., and E. Dellacherie. Calcium alginate beads coated with chitosan: Effect of the structure of encapsulated materials on their release. Process Biochem. 31:745–751, 1996.CrossRefGoogle Scholar
  12. 12.
    Ingram, D. A., N. M. Caplice, and M. C. Yoder. Unresolved questions, changing definitions, and novel paradigms for defining endothelial progenitor cells. Blood. 106:1525–1531, 2005.CrossRefPubMedGoogle Scholar
  13. 13.
    Ingram, D. A., L. E. Mead, H. Tanaka, V. Meade, A. Fenoglio, K. Mortell, K. Pollok, M. J. Ferkowicz, D. Gilley, and M. C. Yoder. Identification of a novel hierarchy of endothelial progenitor cells using human peripheral and umbilical cord blood. Blood. 104:2752–2760, 2004.CrossRefPubMedGoogle Scholar
  14. 14.
    Khong, T. T., O. A. Aarstad, G. Skjak-Braek, K. I. Draget, and K. M. Varum. Gelling concept combining chitosan and alginate-proof of principle. Biomacromolecules. 14:2765–2771, 2013.CrossRefPubMedGoogle Scholar
  15. 15.
    Kong, H. J., E. Wong, and D. J. Mooney. Independent control of rigidity and toughness of polymeric hydrogels. Macromolecules. 36:4582–4588, 2003.CrossRefGoogle Scholar
  16. 16.
    Lai, H. L., A. Abu’Khalil, and D. Q. Craig. The preparation and characterisation of drug-loaded alginate and chitosan sponges. Int. J. Pharm. 251:175–181, 2003.CrossRefPubMedGoogle Scholar
  17. 17.
    Lee, B. H., B. Li, and S. A. Guelcher. Gel microstructure regulates proliferation and differentiation of mc3t3-e1 cells encapsulated in alginate beads. Acta Biomater. 8:1693–1702, 2012.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Lee, K. Y., and D. J. Mooney. Alginate: Properties and biomedical applications. Prog. Polym. Sci. 37:106–126, 2012.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Liu, J., A. Hsu, J. F. Lee, D. E. Cramer, and M. J. Lee. To stay or to leave: Stem cells and progenitor cells navigating the s1p gradient. World J. Biol. Chem. 2:1–13, 2011.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Madan, M., A. Bajaj, S. Lewis, N. Udupa, and J. A. Baig. In situ forming polymeric drug delivery systems. Indian J. Pharm. Sci. 71:242–251, 2009.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Maghami, G. G., and G. A. F. Roberts. Studies on the adsorption of anionic dyes on chitosan. Macromol. Chem. Phys. 189:2239–2243, 1988.CrossRefGoogle Scholar
  22. 22.
    Maia, F. R., K. B. Fonseca, G. Rodrigues, P. L. Granja, and C. C. Barrias. Matrix-driven formation of mesenchymal stem cell-extracellular matrix microtissues on soft alginate hydrogels. Acta Biomater. 10:3197–3208, 2014.CrossRefPubMedGoogle Scholar
  23. 23.
    Meng, X., F. Tian, J. Yang, C. N. He, N. Xing, and F. Li. Chitosan and alginate polyelectrolyte complex membranes and their properties for wound dressing application. J. Mater. Sci. Mater. Med. 21:1751–1759, 2010.CrossRefPubMedGoogle Scholar
  24. 24.
    Mi, F.-L., H.-W. Sung, and S.-S. Shyu. Drug release from chitosan–alginate complex beads reinforced by a naturally occurring cross-linking agent. Carbohydr. Polym. 48:61–72, 2002.CrossRefGoogle Scholar
  25. 25.
    Nakatsu, M. N., R. C. Sainson, J. N. Aoto, K. L. Taylor, M. Aitkenhead, S. Perez-del-Pulgar, P. M. Carpenter, and C. C. Hughes. Angiogenic sprouting and capillary lumen formation modeled by human umbilical vein endothelial cells (huvec) in fibrin gels: The role of fibroblasts and angiopoietin-1. Microvasc. Res. 66:102–112, 2003.CrossRefPubMedGoogle Scholar
  26. 26.
    Naor, M. M., M. D. Walker, J. R. Van Brocklyn, G. Tigyi, and A. L. Parrill. Sphingosine 1-phosphate pka and binding constants: Intramolecular and intermolecular influences. J. Mol. Graph. Model. 26:519–528, 2007.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Neves, S. C., D. B. Gomes, A. Sousa, S. J. Bidarra, P. Petrini, L. Moroni, C. C. Barrias, and P. L. Granja. Biofunctionalized pectin hydrogels as 3d cellular microenvironments. J. Mater. Chem. B. 3:2096–2108, 2015.CrossRefGoogle Scholar
  28. 28.
    Ogle, M. E., L. S. Sefcik, A. O. Awojoodu, N. F. Chiappa, K. Lynch, S. Peirce-Cottler, and E. A. Botchwey. Engineering in vivo gradients of sphingosine-1-phosphate receptor ligands for localized microvascular remodeling and inflammatory cell positioning. Acta Biomater. 10:4704–4714, 2014.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Oyama, O., N. Sugimoto, X. Qi, N. Takuwa, K. Mizugishi, J. Koizumi, and Y. Takuwa. The lysophospholipid mediator sphingosine-1-phosphate promotes angiogenesis in vivo in ischaemic hindlimbs of mice. Cardiovasc. Res. 78:301–307, 2008.CrossRefPubMedGoogle Scholar
  30. 30.
    Peppas, N. A., J. Z. Hilt, A. Khademhosseini, and R. Langer. Hydrogels in biology and medicine: From molecular principles to bionanotechnology. Adv. Mater. 18:1345–1360, 2006.CrossRefGoogle Scholar
  31. 31.
    Qi, X., Y. Okamoto, T. Murakawa, F. Wang, O. Oyama, R. Ohkawa, K. Yoshioka, W. Du, N. Sugimoto, Y. Yatomi, N. Takuwa, and Y. Takuwa. Sustained delivery of sphingosine-1-phosphate using poly(lactic-co-glycolic acid)-based microparticles stimulates akt/erk-enos mediated angiogenesis and vascular maturation restoring blood flow in ischemic limbs of mice. Eur. J. Pharmacol. 634:121–131, 2010.CrossRefPubMedGoogle Scholar
  32. 32.
    Sefcik, L. S., C. E. Petrie Aronin, K. A. Wieghaus, and E. A. Botchwey. Sustained release of sphingosine 1-phosphate for therapeutic arteriogenesis and bone tissue engineering. Biomaterials. 29:2869–2877, 2008.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Sezer, A. D., and J. Akbuga. Release characteristics of chitosan treated alginate beads: II. Sustained release of a low molecular drug from chitosan treated alginate beads. J. Microencapsul. 16:687–696, 1999.CrossRefPubMedGoogle Scholar
  34. 34.
    Sibaja, B., E. Culbertson, P. Marshall, R. Boy, R. M. Broughton, A. A. Solano, M. Esquivel, J. Parker, L. De La Fuente, and M. L. Auad. Preparation of alginate-chitosan fibers with potential biomedical applications. Carbohydr. Polym. 134:598–608, 2015.CrossRefPubMedGoogle Scholar
  35. 35.
    Silva, E. A., E. S. Kim, H. J. Kong, and D. J. Mooney. Material-based deployment enhances efficacy of endothelial progenitor cells. Proc. Natl. Acad. Sci. USA 105:14347–14352, 2008.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Silva, E. A., and D. J. Mooney. Spatiotemporal control of vascular endothelial growth factor delivery from injectable hydrogels enhances angiogenesis. J. Thromb. Haemost. 5:590–598, 2007.CrossRefPubMedGoogle Scholar
  37. 37.
    Silva, E. A., and D. J. Mooney. Effects of vegf temporal and spatial presentation on angiogenesis. Biomaterials 31:1235–1241, 2010.CrossRefPubMedGoogle Scholar
  38. 38.
    Silva, C. M., A. J. Ribeiro, M. Figueiredo, D. Ferreira, and F. Veiga. Microencapsulation of hemoglobin in chitosan-coated alginate microspheres prepared by emulsification/internal gelation. AAPS J. 7:E903–E913, 2005.CrossRefGoogle Scholar
  39. 39.
    Singh, S., B. M. Wu, and J. C. Dunn. Delivery of vegf using collagen-coated polycaprolactone scaffolds stimulates angiogenesis. J. Biomed. Mater. Res. A 100:720–727, 2012.CrossRefPubMedGoogle Scholar
  40. 40.
    Staton, C. A., M. W. Reed, and N. J. Brown. A critical analysis of current in vitro and in vivo angiogenesis assays. Int. J. Exp. Pathol. 90:195–221, 2009.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Tengood, J. E., K. M. Kovach, P. E. Vescovi, A. J. Russell, and S. R. Little. Sequential delivery of vascular endothelial growth factor and sphingosine 1-phosphate for angiogenesis. Biomaterials 31:7805–7812, 2010.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Thomas, A. M., and L. D. Shea. Polysaccharide-modified scaffolds for controlled lentivirus delivery in vitro and after spinal cord injury. J. Control Release. 170:421–429, 2013.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Venkatesan, J., I. Bhatnagar, and S. K. Kim. Chitosan-alginate biocomposite containing fucoidan for bone tissue engineering. Mar. Drugs. 12:300–316, 2014.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Wacker, B. K., E. A. Scott, M. M. Kaneda, S. K. Alford, and D. L. Elbert. Delivery of sphingosine 1-phosphate from poly(ethylene glycol) hydrogels. Biomacromolecules. 7:1335–1343, 2006.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Walter, D. H., U. Rochwalsky, J. Reinhold, F. Seeger, A. Aicher, C. Urbich, I. Spyridopoulos, J. Chun, V. Brinkmann, P. Keul, B. Levkau, A. M. Zeiher, S. Dimmeler, and J. Haendeler. Sphingosine-1-phosphate stimulates the functional capacity of progenitor cells by activation of the cxcr4-dependent signaling pathway via the s1p3 receptor. Arterioscler. Thromb. Vasc. Biol. 27:275–282, 2007.CrossRefPubMedGoogle Scholar
  46. 46.
    Williams, P. A., and E. A. Silva. The role of synthetic extracellular matrices in endothelial progenitor cell homing for treatment of vascular disease. Ann. Biomed. Eng. 43(10):2301–2313, 2015.CrossRefPubMedGoogle Scholar
  47. 47.
    Williams, P. A., R. S. Stilhano, V. P. To, L. Tran, K. Wong, and E. A. Silva. Hypoxia augments outgrowth endothelial cell (oec) sprouting and directed migration in response to sphingosine-1-phosphate (s1p). PLoS One. 10:e0123437, 2015.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Yan, X.-L., E. Khor, and L.-Y. Lim. Chitosan-alginate films prepared with chitosans of different molecular weights. J. Biomed. Mater. Res. 58:358–365, 2001.CrossRefPubMedGoogle Scholar
  49. 49.
    Yoder, M. C., L. E. Mead, D. Prater, T. R. Krier, K. N. Mroueh, F. Li, R. Krasich, C. J. Temm, J. T. Prchal, and D. A. Ingram. Redefining endothelial progenitor cells via clonal analysis and hematopoietic stem/progenitor cell principals. Blood. 109:1801–1809, 2007.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Biomedical Engineering Society 2016

Authors and Affiliations

  • Priscilla A. Williams
    • 1
  • Kevin T. Campbell
    • 1
  • Hessam Gharaviram
    • 1
  • Justin L. Madrigal
    • 1
  • Eduardo A. Silva
    • 1
    Email author
  1. 1.Department of Biomedical EngineeringUniversity of California, DavisDavisUSA

Personalised recommendations