Annals of Biomedical Engineering

, Volume 45, Issue 4, pp 1039–1047 | Cite as

Mechanics Reveals the Biological Trigger in Wrinkly Fingers

  • P. SáezEmail author
  • A. M. Zöllner


Fingertips wrinkle due to long exposure to water. The biological reason for this morphological change is unclear and still not fully understood. There are two main hypotheses for the underlying mechanism of fingertip wrinkling: the ‘shrink’ model (in which the wrinkling is driven by the contraction of the lower layers of skin, associated with the shrinking of the underlying vasculature), and the ‘swell’ model (in which the wrinkling is driven by the swelling of the upper layers of the skin, associated with osmosis). In reality, contraction of the lower layers of the skin and swelling of the upper layers will happen simultaneously. However, the relative importance of these two mechanisms to drive fingertip wrinkling also remains unclear. Simulating the swelling in the upper layers of skin alone, which is associated with neurological disorders, we found that wrinkles appeared above an increase of volume of \({\approx } 10\%.\) Therefore, the upper layers can not exceed this swelling level in order to not contradict in vivo observations in patients with such neurological disorders. Simulating the contraction of the lower layers of the skin alone, we found that the volume have to decrease a \({\approx } 20\%\) to observe wrinkles. Furthermore, we found that the combined effect of both mechanisms leads to pronounced wrinkles even at low levels of swelling and contraction when individually they do not. This latter results indicates that the collaborative effect of both hypothesis are needed to induce wrinkles in the fingertips. Our results demonstrate how models from continuum mechanics can be successfully applied to testing hypotheses for the mechanisms that underly fingertip wrinkling, and how these effects can be quantified.


Biomechanics Wrinkly fingers Finite element method Continuum mechanics 


  1. 1.
    Ambrosi, D., G. A. Ateshian, E. M. Arruda, S. C. Cowin, J. Dumais, A. Goriely, G. A. Holzapfel, J. D. Humphrey, R. Kemkemer, E. Kuhl, J. E. Olberding, L. A. Taber, and K. Garikipati. Perspectives on biological growth and remodeling. J. Mech. Phys. Solids 59:863–883, 2011.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Balbi, V., E. Kuhl, and P. Ciarletta. Morphoelastic control of gastro-intestinal organogenesis: theoretical predictions and numerical insights. J. Mech. Phys. Solids 78:493–510, 2014.CrossRefGoogle Scholar
  3. 3.
    Ben Amar, M., and P. Ciarletta. Swelling instability of surface-attached gels as a model of soft tissue growth under geometric constraints. J. Mech. Phys. Solids 58(7):935–954, 2010.CrossRefGoogle Scholar
  4. 4.
    Ben Amar, M., and A. Goriely. Growth and instability in elastic tissues. J. Mech. Phys. Solids 53(10):2284–2319, 2005.CrossRefGoogle Scholar
  5. 5.
    Ben Amar, M., and F. Jia. Anisotropic growth shapes intestinal tissues during embryogenesis. Proc. Natl Acad. Sci. USA 110(26):10525–10530, 2013.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Blugerman, G., M. D. Paul, D. Schavelzon, R. S. Mulholland, M. Sandhoffer, P. Lisborg, A. Rusciani, M. Divaris, and M. Kreindel. In: Radio-frequency Assisted Liposuction (RFAL), Advanced Techniques in Liposuction and Fat Transfer, edited by N. Serdev. InTech. doi: 10.5772/20831.
  7. 7.
    Braham, J., M. Sadeh, and I. Sarovapinhas. Skin wrinkling on immersion of hands: a test of sympathetic function. Arch. Neurol. 36(2):113–114, 1979.CrossRefPubMedGoogle Scholar
  8. 8.
    Bryan, F. Dynamic mechanical testing of human skin ‘in vivo’. J. Biomech. 6(3):559–558, 1970.Google Scholar
  9. 9.
    Budday, S., C. Raybaud, and E. Kuhl. A mechanical model predicts morphological abnormalities in the developing human brain. Sci. Rep. 4:5644, 2014a.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Budday, S., P. Steinmann, and E. Kuhl. The role of mechanics during brain development. J. Mech. Phys. Solids 72:75–92, 2014b.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Cao, Y., and J. W. Hutchinson. From wrinkles to creases in elastomers: the instability and imperfection-sensitivity of wrinkling. Proc. R. Soc. A 468(2137):94–115, 2012.CrossRefGoogle Scholar
  12. 12.
    Changizi, M., R. Weber, R. Kotecha, and J. Palazzo. Are wet-induced wrinkled fingers primate rain treads? Brain Behav. Evol. 77:286–290, 2011.CrossRefPubMedGoogle Scholar
  13. 13.
    Chaudhry, H. R., B. Bukiet, T. Findley, and A. B. Ritter. Evaluation of residual stress in rabbit skin and the relevant material constants. J. Theor. Biol. 2:191–195, 1998.CrossRefGoogle Scholar
  14. 14.
    Ciarletta, P., and M. Ben Amar. Pattern formation in fiber-reinforced tubular tissues: folding and segmentation during epithelial growth. J. Mech. Phys. Solids 60(3):525–537, 2012a.CrossRefGoogle Scholar
  15. 15.
    Ciarletta, P., and M. Ben Amar. Peristaltic patterns for swelling and shrinking of soft cylindrical gels. Soft Matter 8(6):1760, 2012b.CrossRefGoogle Scholar
  16. 16.
    Ciarletta, P., M. Ben Amar, and M. Labouesse. Continuum model of epithelial morphogenesis during Caenorhabditis elegans embryonic elongation. Philos. Trans. A 367(1902):3379–3400, 2009.CrossRefGoogle Scholar
  17. 17.
    Ciarletta, P., V. Balbi, and E. Kuhl. Pattern selection in growing tubular tissues. Phys. Rev. Lett. 113:248101, 2014.CrossRefPubMedGoogle Scholar
  18. 18.
    Efimenko, K., M. Rackaitis, E. Manias, A. Vaziri, L. Mahadevan, and J. Genzer. Nested self-similar wrinkling patterns in skins. Nat. Mater. 4(4):293–297, 2005.CrossRefPubMedGoogle Scholar
  19. 19.
    Eskandari, M., W. G. Kuschner, and E. Kuhl. Patient-specific airway wall remodeling in chronic lung disease. Ann. Biomed. Eng. 43(10):2538–2551, 2015.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Flory, P. J. Thermodynamic relations for high elastic materials. Trans. Faraday Soc. 57:829–838, 1961.CrossRefGoogle Scholar
  21. 21.
    Flynn, C. O., and B. A. O. McCormack. A three-layer model of skin and its application in simulating wrinkling. Comput. Methods Biomech. Biomed. Eng. 12(2):125–134, 2009.CrossRefGoogle Scholar
  22. 22.
    Flynn, C., and B. A. O. McCormack. Simulating the wrinkling and aging of skin with a multi-layer finite element model. J. Biomech. 43(3):442–448, 2010.CrossRefPubMedGoogle Scholar
  23. 23.
    Frenzel, H., J. Bohlender, K. Pinsker, B. Wohlleben, J. Tank, S. G. Lechner, D. Schiska, T. Jaijo, F. Rueschendorf, K. Saar, J. Jordan, J. M. Millan, M. Gross, and G. R. Lewin. A genetic basis for mechanosensory traits in humans. PLoS Biol. 10(5):e1001318, 2012.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Goektepe, S., O. J. Abilez, and E. Kuhl. A generic approach towards finite growth with examples of athlete’s heart, cardiac dilation, and cardiac wall thickening. J. Mech. Phys. Solids 58(10):1661–1680, 2010.CrossRefGoogle Scholar
  25. 25.
    Goriely, A., and M. Ben Amar. Differential growth and instability in elastic shells. Phys. Rev. Lett. 94(19):198103, 2005.CrossRefPubMedGoogle Scholar
  26. 26.
    Hendriks, F. M., D. V. Brokken, J. T. W. M. Van Eemeren, C. W. J. Oomens, F. P. T. Baaijens, and J. B. A. M. Horsten. A numerical-experimental method to characterize the non-linear mechanical behaviour of human skin. Skin Res. Technol. 9(3):274–283, 2003.CrossRefPubMedGoogle Scholar
  27. 27.
    Hendriks, F. M., D. Brokken, C. W. J. Oomens, D. L. Bader, and F. P. T. Baaijens. The relative contributions of different skin layers to the mechanical behavior of human skin in vivo using suction experiments. Med. Eng. Phys. 28(3):259–266, 2006.CrossRefPubMedGoogle Scholar
  28. 28.
    Himpel, G., E. Kuhl, A. Menzel, and P. Steinmann. Computational modelling of isotropic multiplicative growth. Comput. Model. Eng. Sci. 8(2):119–134, 2005.Google Scholar
  29. 29.
    Holzapfel, G. Nonlinear Solid Mechanics: A Continuum Approach for Engineering. Chichester: Wiley, 2000.Google Scholar
  30. 30.
    Huang, Z., W. Hong, and Z. Suo. Evolution of wrinkles in hard films on soft substrates. Phys. Rev. E 70(3):030601, 2004.CrossRefGoogle Scholar
  31. 31.
    Huang, Z. Y., W. Hong, and Z. Suo. Nonlinear analyzes of wrinkles in a film bonded to a compliant substrate. J. Mech. Phys. Solids 53(9):2101–2118, 2005.CrossRefGoogle Scholar
  32. 32.
    Jones, G. W., and S. J. Chapman. Modeling growth in biological materials. SIAM Rev. 54(1):52–118, 2012.CrossRefGoogle Scholar
  33. 33.
    Kareklas, K., D. Nettle, and T. V. Smulders. Water-induced finger wrinkles improve handling of wet objects. Biol. Lett. 9(2):20120999, 2013.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Kuhl, E. Growing matter: a review of growth in living systems. J. Mech. Behav. Biomed. Mater. 29:529–543, 2014.CrossRefPubMedGoogle Scholar
  35. 35.
    Kuhl, E., and P. Steinmann. Theory and numerics of geometrically non-linear open system mechanics. Int. J. Numer. Methods Eng. 58(11):1593–1615, 2003.CrossRefGoogle Scholar
  36. 36.
    Lambert, W. C. Physiology, biochemistry, and molecular biology of the skin. N. Engl. J. Med. 328:1048, 1993.CrossRefGoogle Scholar
  37. 37.
    Lanir, Y., and Y. C. Fung. Two-dimensional mechanical properties of rabbit skin—II. Experimental results. J. Biomech. 2(7):171–174, 1974.CrossRefGoogle Scholar
  38. 38.
    Lee, E. H. Elastic-plastic deformation at finite strains. J. Appl. Mech. 36(1):1–6, 1969.CrossRefGoogle Scholar
  39. 39.
    Li, B., Y. P. Cao, X. Q. Feng, and H. Gao. Surface wrinkling of mucosa induced by volumetric growth: theory, simulation and experiment. J. Mech. Phys. Solids 59(4):758–774, 2011.CrossRefGoogle Scholar
  40. 40.
    Lin, H. T., T. F. Hong, and W. L. Li. Grip performance affected by water-induced wrinkling of fingers. Tribol. Lett. 58(3):1–9, 2015a.CrossRefGoogle Scholar
  41. 41.
    Liu, Y., X. Yang, Y. Cao, Z. Wang, B. Chen, J. Zhang, and H. Zhang. Dehydration of core/shell fruits. Comput. Graph. 47:68–77, 2015b.CrossRefGoogle Scholar
  42. 42.
    Marsden, J. E., and T. J. R. Hughes. Mathematical Foundations of Elasticity. Mineola: Dover Publications, 1983.Google Scholar
  43. 43.
    Menzel, A., and E. Kuhl. Frontiers in growth and remodeling. Mech. Res. Commun. 42:1–14, 2012.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Mora, T., and A. Boudaoud. Buckling of swelling gels. Eur. Phys. J. E 20(2):119–124, 2006.CrossRefPubMedGoogle Scholar
  45. 45.
    Motala, M. J., D. Perlitz, C. M. Daly, P. Yuan, R. G. Nuzzo, G. Ralph, and J. K. Hsia. Programming matter through strain. Extrem. Mech. Lett. 3:8–16, 2015.CrossRefGoogle Scholar
  46. 46.
    Moulton, D. E., and A. Goriely. Circumferential buckling instability of a growing cylindrical tube. J. Mech. Phys. Solids 59(3):525–537, 2011.CrossRefGoogle Scholar
  47. 47.
    O’Riain, S. New and simple test of nerve function in hand. Br. Med. J. 3(5881):615–616, 1973.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Riks, E. An incremental approach to the solution of snapping and buckling problems. Int. J. Solids Struct. 15(7):529–551, 1979.CrossRefGoogle Scholar
  49. 49.
    Rodriguez, E. K., A. Hoger, and A. D. McCulloch. Stress-dependent finite growth in soft elastic tissues. J. Biomech. 27(4):455–467, 1994.CrossRefPubMedGoogle Scholar
  50. 50.
    Saez, P. On the theories and numerics of continuum models for adaptation processes in biological tissues. Arch. Comput. Methods Eng. doi: 10.1007/s11831-014-9142-8.
  51. 51.
    Stoop, N., R. Lagrange, D. Terwagne, P. M. Reis, and J. Dunkel. Curvature-induced symmetry breaking determines elastic surface patterns. Nat. Mater. 14(3):337–342, 2015.CrossRefPubMedGoogle Scholar
  52. 52.
    Tong, P., and Y. C. Fung. The stress-strain relationship for the skin. J. Biomech. 9(10):649–657, 1976.CrossRefPubMedGoogle Scholar
  53. 53.
    Wempner, G. A. Discrete approximations related to nonlinear theories of solids. Int. J. Solids Struct. 11:1581–1599, 1971.CrossRefGoogle Scholar
  54. 54.
    Wilder-Smith, E. P. V. Water immersion wrinkling-physiology and use as an indicator of sympathetic function. Clin. Auton. Res., 14(2):125–131, 2004.CrossRefPubMedGoogle Scholar
  55. 55.
    Wilder-Smith, E. P. V., and A. Chow. Water-immersion wrinkling is due to vasoconstriction. Muscle Nerve 27(3):307–311, 2003.CrossRefPubMedGoogle Scholar
  56. 56.
  57. 57.
    Yin, J., G. J. Gerling, and X. Chen. Mechanical modeling of a wrinkled fingertip immersed in water. Acta Biomater. 6(4):1487–1496, 2010.CrossRefPubMedGoogle Scholar
  58. 58.
    Zang, J., X. Zhao, Y. Cao, and J. W. Hutchinson. Localized ridge wrinkling of stiff films on compliant substrates. J. Mech. Phys. Solids 60(7):1265–1279, 2012.CrossRefGoogle Scholar
  59. 59.
    Zhao, Y., X. Han, G. Li, C. Lu, Y. Cao, X. Q. Feng, et al. Effect of lateral dimension on the surface wrinkling of a thin film on compliant substrate induced by differential growth/swelling. J. Mech. Phys. Solids 83:129–145, 2015.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2016

Authors and Affiliations

  1. 1.Laboratori de Càlcul Numèric (LaCaN)Universitat Politecnica de CatalunyaBarcelonaSpain
  2. 2.Department of Mechanical EngineeringStanford UniversityStanfordUSA

Personalised recommendations