SimVascular: An Open Source Pipeline for Cardiovascular Simulation

Abstract

Patient-specific cardiovascular simulation has become a paradigm in cardiovascular research and is emerging as a powerful tool in basic, translational and clinical research. In this paper we discuss the recent development of a fully open-source SimVascular software package, which provides a complete pipeline from medical image data segmentation to patient-specific blood flow simulation and analysis. This package serves as a research tool for cardiovascular modeling and simulation, and has contributed to numerous advances in personalized medicine, surgical planning and medical device design. The SimVascular software has recently been refactored and expanded to enhance functionality, usability, efficiency and accuracy of image-based patient-specific modeling tools. Moreover, SimVascular previously required several licensed components that hindered new user adoption and code management and our recent developments have replaced these commercial components to create a fully open source pipeline. These developments foster advances in cardiovascular modeling research, increased collaboration, standardization of methods, and a growing developer community.

This is a preview of subscription content, log in to check access.

Figure 1
Figure 2

Adapted from Ref. 29.

Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Figures adapted from Ref. 1.

Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

Adapted from Ref. 49.

References

  1. 1.

    Arzani, A., P. Dyverfeldt, T. Ebbers, and S. C. Shadden (2012) In vivo validation of numerical prediction for turbulence intensity in an aortic coarctation. Ann. Biomed. Eng. 40(4):860–870.

    Article  PubMed  Google Scholar 

  2. 2.

    Arzani, A., A. M. Gambaruto, G. Chen, and S. C. Shadden. Lagrangian wall shear stress structures and near wall transport in high schmidt aneurysmal flows. J. Fluid Mech. 790:158–172, 2016.

    CAS  Article  Google Scholar 

  3. 3.

    Arzani, A., A. S Les, R. L. Dalman, and S. C. Shadden. Effect of exercise on patient specific abdominal aortic aneurysm flow topology and mixing. Int. J. Numer. Methods Biomed. Eng. 30(2):280–295, 2014.

    Article  Google Scholar 

  4. 4.

    Arzani A., and S. C. Shadden. Characterization of the transport topology in patient-specific abdominal aortic aneurysm models. Phys. Fluids (1994-present) (1994), 24(8):081901, 2012.

    Article  Google Scholar 

  5. 5.

    Arzani, A., G. Y. Suh, R. L. Dalman, and S. C. Shadden. A longitudinal comparison of hemodynamics and intraluminal thrombus deposition in abdominal aortic aneurysms. Am. J. Physiol. Heart Circ. Physiol. 307(12):H1786–H1795, 2014.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Astorino, M., J. Hamers, S. C. Shadden, and J. Gerbeau. A robust and efficient valve model based on resistive immersed surfaces. Int. J. Numer. Methods Biomed. Eng. 28(9):937–959, 2012.

    Article  Google Scholar 

  7. 7.

    Bezdek, J. C., L. O. Hall, and L. P. Clarke. Review of MR image segmentation techniques using pattern recognition. Med. Phys. 20(4):1033–1048, 1992.

    Article  Google Scholar 

  8. 8.

    Bockman, M. D., A. P. Kansagra, S. C. Shadden, E. C. Wong, and A. L. Marsden. Fluid mechanics of mixing in the vertebrobasilar system: Cardiovasc. Eng. Technol. 3(4):450–461, 2012.

    Article  Google Scholar 

  9. 9.

    Bogren, H. G., R. H. Klipstein, D. N. Firmin, R. H. Mohiaddin, S. R. Underwood, R. S. O. Rees, and D. B. Longmore. Quantitation of antegrade and retrograde blood flow in the human aorta by magnetic resonance velocity mapping. Am. Heart J. 117(6):1214–1222, 1989.

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Braunwald, E., E. M. Antman, J. W. Beasley, R. M. Califf, M. D. Cheitlin, J. S. Hochman, R. H. Jones, D. Kereiakes, J. Kupersmith, T. N. Levin, et al. Acc/aha 2002 guideline update for the management of patients with unstable angina and non-st-segment elevation myocardial infarction–summary article: a report of the american college of cardiology/american heart association task force on practice guidelines (committee on the management of patients with unstable angina). J. Am. Coll. Cardiol. 40(7):1366–1374, 2002.

    Article  PubMed  Google Scholar 

  11. 11.

    Carr, I. A., N. Nemoto, R. S. Schwartz, and S. C. Shadden. Size-dependent predilections of cardiogenic embolic transport. Am. J. Physiol. Heart Circ. Physiol. 305(5):H732–H739, 2013.

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Cheng, C. P., R. J. Herfkens, C. A. Taylor, and J. A. Feinstein. Proximal pulmonary artery blood flow characteristics in healthy subjects measured in an upright posture using MRI: the effects of exercise and age. J. Magn. Resonance Imaging 21(6):752–758, 2005.

    Article  Google Scholar 

  13. 13.

    Coogan, J. S., J. D. Humphrey, and C. A. Figueroa. Computational simulations of hemodynamic changes within thoracic, coronary, and cerebral arteries following early wall remodeling in response to distal aortic coarctation. Biomech. Model. Mechanobiol. 12(1):79–93, 2013.

    Article  PubMed  Google Scholar 

  14. 14.

    Davies, P. F., M. Civelek, Y. Fang, and I. Fleming. The atherosusceptible endothelium: endothelial phenotypes in complex haemodynamic shear stress regions in vivo. Cardiovasc. Res. 99(2):315–327, 2013.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Esmaily-Moghadam, M., Y. Bazilevs, T.-Y. Hsia, I. E. Vignon-Clementel, and A. L. Marsden. A comparison of outlet boundary treatments for prevention of backflow divergence with relevance to blood flow simulations. Comput. Mech. 48:277–291, 2011.

    Article  Google Scholar 

  16. 16.

    Esmaily-Moghadam, M., Y. Bazilevs, and A. L. Marsden. A new preconditioning technique for implicitly coupled multidomain simulations with applications to hemodynamics. Comput. Mech. 52:1141–1152, 2013.

    Article  Google Scholar 

  17. 17.

    Esmaily-Moghadam, M., T.-Y. Hsia, and A. L. Marsden. The Assisted Bidirectional Glenn: a novel surgical approach for first stage single ventricle heart palliation. J. Thorac. Cardiovasc. Surg. 149(3):699–705, 2015.

    Article  PubMed  Google Scholar 

  18. 18.

    Esmaily-Moghadam, M., I. E. Vignon-Clementel, R. Figliola, and A. L. Marsden. A modular numerical method for implicit 0D/3D coupling in cardiovascular finite element simulations. J. Comput. Phys. 244:63–79, 2013.

    Article  Google Scholar 

  19. 19.

    Figueroa, C. A., I. E. Vignon-Clementel, K. E. Jansen, T. J.R. Hughes, and C. A. Taylor. A coupled momentum method for modeling blood flow in three-dimensional deformable arteries. Comput. Methods Appl. Mech. Eng. 195:5685–5706, 2006.

    Article  Google Scholar 

  20. 20.

    L. P. Franca and S. L. Frey. Stabilized finite element methods: II. The incompressible navier-stokes equations. Comput. Methods Appl. Mech. Eng. 99(2–3):209–233, 1992.

    Article  Google Scholar 

  21. 21.

    Hansen K. B., and S. C. Shadden. A reduced-dimensional model for near-wall transport in cardiovascular flows. Biomech. Model. Mechanobiol. 15(3):713–722, 2016.

    Article  PubMed  Google Scholar 

  22. 22.

    Kim, H. J., I. E. Vignon-Clementel, J. S. Coogan, C. A. Figueroa, K. E. Jansen, and C.A. Taylor. Patient-specific modeling of blood flow and pressure in human coronary arteries. Ann. Biomed. Eng. 38(10):3195–3209, 2010.

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Krams, R., J. J. Wentzel, J. A.F. Oomen, R. Vinke, J. C.H. Schuurbiers, P. J. De Feyter, P. W. Serruys, and C. J. Slager. Evaluation of endothelial shear stress and 3D geometry as factors determining the development of atherosclerosis and remodeling in human coronary arteries in vivo Combining 3D reconstruction from angiography and IVUS (ANGUS) with computational fluid dynamics. Arterioscler. Thromb. Vasc. Biol. 17(10):2061–2065, 1997.

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Ku, D. N., D. P. Giddens, C. K. Zarins, and S. Glagov. Pulsatile flow and atherosclerosis in the human carotid bifurcation. positive correlation between plaque location and low oscillating shear stress. Arterioscler. Thromb. Vasc. Biol. 5(3):293–302, 1985.

    CAS  Article  Google Scholar 

  25. 25.

    Kung, E. O., A. Baretta, C. Baker, G. Arbia, G. Biglino, C. Corsini, S. Schievano, I. E. Vignon-Clementel, G. Dubini, G. Pennati, et al. Predictive modeling of the virtual Hemi-Fontan operation for second stage single ventricle palliation: two patient-specific cases. J. Biomech. 46(2):423–429, 2013.

    Article  PubMed  Google Scholar 

  26. 26.

    Kung, E. O., A. M. Kahn, J. C. Burns, and A. L. Marsden. In vitro validation of patient-specific hemodynamic simulations in coronary aneurysms caused by Kawasaki disease. Cardiovasc. Eng. Technol. 5(2):189–201, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Kung, E. O., A. S. Les, C. A. Figueroa, F. Medina, K. Arcaute, R. B. Wicker, M. V. McConnell, and C. A. Taylor. In vitro validation of finite element analysis of blood flow in deformable models. Ann. Biomed. Eng. 39(7):1947–1960, 2011.

    Article  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Kwak, B. R., M. Bäck, M.-L. Bochaton-Piallat, G. Caligiuri, M. J.A.P. Daemen, P. F. Davies, I. E. Hoefer, P. Holvoet, H. Jo, R. Krams, et al. Biomechanical factors in atherosclerosis: mechanisms and clinical implications. Eur. Heart J. 35(43):3013-3020, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Les, A. S., S. C. Shadden, C. A. Figueroa, J. M. Park, M. M. Tedesco, R. J. Herfkens, R. L. Dalman, and C. A. Taylor. Quantification of Hemodynamics in Abdominal Aortic Aneurysms During Rest and Exercise Using Magnetic Resonance Imaging and Computational Fluid DynamicsQuantification of hemodynamics in abdominal aortic aneurysms during rest and exercise using magnetic resonance imaging and computational fluid dynamics. Ann. Biomed. Eng. 38(4):1288–1313, 2010.

    Article  PubMed  Google Scholar 

  30. 30.

    Li, C., R. Huang, Z. Ding, J. C. Gatenby, D. N. Metaxas, and J. C. Gore. A level set method for image segmentation in the presence of intensity inhomogeneities with application to mri. IEEE Trans. Image Process. 20(7):2007–2016, 2011.

    Article  PubMed  Google Scholar 

  31. 31.

    Lonyai, A., A. M. Dubin, J. A. Feinstein, C. A. Taylor, and S. C. Shadden. New insights into pacemaker lead-induced venous occlusion: Simulation-based investigation of alterations in venous biomechanics. Cardiovasc. Eng. 10(2):84–90, 2010.

    Article  PubMed  Google Scholar 

  32. 32.

    Lorigo, L. M., O. D. Faugeras, W. E. L. Grimson, R. Keriven, R. Kikinis, A. Nabavi, and C.-F. Westin. Curves: Curve evolution for vessel segmentation. Med. Image Anal. 5(3):195–206, 2001.

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    Malek, A. M., S. L. Alper, and S. Izumo. Hemodynamic shear stress and its role in atherosclerosis. JAMA 282(21):2035–2042, 1999.

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Marsden, A. L., A. J. Bernstein, V. M. Reddy, S. C. Shadden, R. L. Spilker, F. P. Chan, C. A. Taylor, and J. A. Feinstein. Evaluation of a novel Y-shaped extracardiac Fontan baffle using computational fluid dynamics. J. Thorac. Cardiovasc. Surg. 137(2):394–U187, 2009.

    Article  Google Scholar 

  35. 35.

    Marsden A. L., and M. Esmaily-Moghadam. Multiscale modeling of cardiovascular flows for clinical decision support. Appl. Mech. Rev. 67(3):030804, 2015.

    Article  Google Scholar 

  36. 36.

    Marsden, A. L., V. M. Reddy, S. C. Shadden, F. P. Chan, C. A. Taylor, and J. A. Feinstein. A new multiparameter approach to computational simulation for Fontan assessment and redesign. Congenit. Heart Dis. 5(2):104–117, 2010.

    Article  PubMed  Google Scholar 

  37. 37.

    Martin, M. H., J. A. Feinstein, F. P. Chan, A. L. Marsden, W. Yang, and V. M. Reddy. Technical feasibility and intermediate outcomes of a hand-crafted, area-preserving, bifurcated “Y-Graft” Fontan. Thorac. Cardiovasc. Surg. 149(1):247–255, 2015.

    Article  Google Scholar 

  38. 38.

    Merkow, J., Z. Tu, D. Kriegman, and A. L. Marsden. Structural edge detection for cardiovascular modeling. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 735–742. Springer, New York, 2015.

  39. 39.

    Milner, J. S., J. A. Moore, B. K. Rutt, and D. A. Steinman. Hemodynamics of human carotid artery bifurcations: computational studies with models reconstructed from magnetic resonance imaging of normal subjects. J. Vasc. Surg. 28(1):143–156, 1998.

    CAS  Article  PubMed  Google Scholar 

  40. 40.

    Moore, J. A., D. A. Steinman, D. W. Holdsworth, and C. R. Ethier. Accuracy of computational hemodynamics in complex arterial geometries reconstructed from magnetic resonance imaging. Ann. Viomedical Eng. 27(1):32–41, 1999.

    CAS  Article  Google Scholar 

  41. 41.

    Morbiducci, U., A. M. Kok, B. R. Kwak, P. H. Stone, D. A. Steinman, J. J. Wentzel, et al. Atherosclerosis at arterial bifurcations: evidence for the role of haemodynamics and geometry. Thromb. Haemost. 115(3):484–492, 2016.

    Article  PubMed  Google Scholar 

  42. 42.

    Morgan, V. L., R. J. Roselli, and C. H. Lorenz. Normal three-dimensional pulmonary artery flow determined by phase contrast magnetic resonance imaging. Ann. Biomed. Eng. 26(4):557–566, 1998.

    CAS  Article  PubMed  Google Scholar 

  43. 43.

    Mukherjee, D., N.D. Jani, K. Selvaganesan, C.L. Weng, and S.C. Shadden. Computational assessment of the relation between embolism source and embolus distribution to the circle of Willis for improved understanding of stroke etiology. J. Biomech. Eng. 138(8):081008-1–081008-13, 2016.

    Article  Google Scholar 

  44. 44.

    Mukherjee, D., J. Padilla, and S. C. Shadden. Numerical investigation of fluid-particle interactions for embolic stroke. Theor. Comput. Fluid Dyn. 30(1):23–39, 2016.

    Article  Google Scholar 

  45. 45.

    Nichols, W., M. O’Rourke, and C. Vlachopoulos. McDonald’s Blood Flow in Arteries: Theoretical, Experimental and Clinical Principles. CRC Press, Boca Raton, 2011.

    Google Scholar 

  46. 46.

    Oakes, J. M., A. L. Marsden, C. Grandmont, S. C. Shadden, C. Darquenne, and I. E. Vignon-Clementel. Airflow and particle deposition simulations in health and emphysema: from in vivo to in silico animal experiments. Ann. Biomed. Eng. 42(4):899–914, 2014.

    Article  PubMed  Google Scholar 

  47. 47.

    Olufsen, M. S., C. S. Peskin, W. Y. Kim, E. M. Pedersen, A. Nadim, and J. Larsen. Numerical simulation and experimental validation of blood flow in arteries with structured-tree outflow conditions. Ann. Biomed. Eng. 28(11):1281–1299, 2000.

    CAS  Article  PubMed  Google Scholar 

  48. 48.

    Perktold, K., M. Hofer, G. Karner, W. Trubel, and H. Schima. Computer simulation of vascular fluid dynamics and mass transport: optimal design of arterial bypass anastomoses. Proc. ECCOMAS 98:484–489, 1998.

    Google Scholar 

  49. 49.

    Ramachandra, A. B., A. M. Kahn, and A. L. Marsden. Patient-specific simulations reveal significant differences in mechanical stimuli in venous and arterial coronary grafts. J. Cardiovasc. Transl. Res. 9(4):279–290, 2016.

    Article  PubMed  Google Scholar 

  50. 50.

    Roccabianca, S., C.A. Figueroa, G. Tellides, and J.D. Humphrey. Quantification of regional differences in aortic stiffness in the aging human. J. Mech. Behav. Biomed. Mater. 29:618–634, 2014.

    CAS  Article  PubMed  Google Scholar 

  51. 51.

    Sahni, O., J. Müller, K. E. Jansen, M. S. Shephard, and C. A. Taylor. Efficient anisotropic adaptive discretization of the cardiovascular system. Comput. Methods Appl. Mech. Eng. 195(41–43):5634–5655, August 2006.

    Article  Google Scholar 

  52. 52.

    Sankaran, S., M. Esmaily-Moghadam, A. M. Kahn, J. Guccione, E. Tseng, and A. L. Marsden. Patient-specific multiscale modeling of blood flow for coronary artery bypass graft surgery. Ann. Biomed. Eng. 40(1):2228–2242, 2012.

    Article  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Schiavazzi, D. E., G. Arbia, C. Baker, A. M. Hlavacek, T. Y. Hsia, A. L. Marsden, I. E. Vignon-Clementel, and The Modeling of Congenital Hearts Alliance (MOCHA) Investigators. Uncertainty quantification in virtual surgery hemodynamics predictions for single ventricle palliation. Int. J. Numer. Methods Biomed. Eng. 32(3), 2016.

    CAS  Article  Google Scholar 

  54. 54.

    Schiavazzi, D. E., E. O. Kung, A. L. Marsden, C. Baker, G. Pennati, T.-Y. Hsia, A. Hlavacek, A. L. Dorfman and Modeling of Congenital Hearts Alliance (MOCHA) Investigators et al. Hemodynamic effects of left pulmonary artery stenosis after superior cavopulmonary connection: a patient-specific multiscale modeling study. J. Thorac. Cardiovasc. Surg. 149(3):689–696, 2015.

    Article  PubMed  Google Scholar 

  55. 55.

    Shadden S. C., and C. A. Taylor. Characterization of coherent structures in the cardiovascular system. Ann. Biomed. Eng. 36:1152–1162, 2008.

    Article  PubMed  Google Scholar 

  56. 56.

    Steinman, D. A., Y. Hoi, P. Fahy, L. Morris, M. T. Walsh, N. Aristokleous, A. S. Anayiotos, Y. Papaharilaou, A. Arzani, S. C. Shadden, et al. Variability of computational fluid dynamics solutions for pressure and flow in a giant aneurysm: the ASME 2012 Summer Bioengineering Conference CFD Challenge. J. Biomech. Eng. 135(2):021016, 2013.

    Article  PubMed  Google Scholar 

  57. 57.

    Suh, G. Y., A. S. Les, A. S. Tenforde, S. C. Shadden, R. L. Spilker, J. J. Yeung, C. P. Cheng, R. J. Herfkens, R. L. Dalman, and C. A. Taylor. Quantification of particle residence time in abdominal aortic aneurysms using magnetic resonance imaging and computational fluid dynamics. Ann. Biomed. Eng. 39:864–883, 2011.

    Article  PubMed  Google Scholar 

  58. 58.

    Suh, G. Y., A. S. Tenforde, S. C. Shadden, R. L. Spilker, C. P. Cheng, R. J. Herfkens, R. L. Dalman, and C. A. Taylor. Hemodynamic changes in abdominal aortic aneurysms with increasing exercise intensity using MR exercise imaging and image-based computational fluid dynamics. Ann. Biomed. Eng. 39:2186–2202, 2011.

    Article  PubMed  PubMed Central  Google Scholar 

  59. 59.

    Tang, B. T., S. S. Pickard, F. P. Chan, P. S. Tsao, C. A. Taylor, and J. A. Feinstein. Wall shear stress is decreased in the pulmonary arteries of patients with pulmonary arterial hypertension: an image-based, computational fluid dynamics study. Pulm. Circ. 2(4):470–476, 2012.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  60. 60.

    Taylor, C. A., M. T. Draney, J. P. Ku, D. Parker, B. N. Steele, K. Wang, and C. K. Zarins. Predictive medicine: computational techniques in therapeutic decision-making. Comput. Aided Surg. 4(5):231–247, 1999.

    CAS  Article  PubMed  Google Scholar 

  61. 61.

    Taylor, C. A., T. A. Fonte, and J. K. Min. Computational fluid dynamics applied to cardiac computed tomography for noninvasive quantification of fractional flow reserve: scientific basis. J. Am. Coll. Cardiol. 61(22):2233–2241, 2013.

    Article  PubMed  Google Scholar 

  62. 62.

    Taylor, C. A., T. J.R. Hughes, and C. K. Zarins. Computational investigations in vascular disease. Comput. Phys. 10(3):224–232, 1996.

    Article  Google Scholar 

  63. 63.

    Taylor, C. A, T. J.R. Hughes, and C. K. Zarins. Finite element modeling of blood flow in arteries. Comput. Methods Appl. Mech. Eng. 158(1):155–196, 1998.

    Article  Google Scholar 

  64. 64.

    Tran, J. S., D. E. Schiavazzi, A. B. Ramachandra, A. M. Kahn, and A. L. Marsden. Automated tuning for parameter identification and uncertainty quantification in multi-scale coronary simulations. Comput. Fluids, 2016.

  65. 65.

    Updegrove, A., N. M. Wilson, and S. C. Shadden. Boolean and smoothing of discrete polygonal surfaces. Adv. Eng. Softw. 95:16–27, 2016.

    Article  Google Scholar 

  66. 66.

    Vignon-Clementel, I. E., C. A. Figueroa, K. E. Jansen, and C. A. Taylor. Outflow boundary conditions for three-dimensional finite element modeling of blood flow and pressure in arteries. Comput. Methods Appl. Mech. Eng. 195(29–32):3776–3796, 2006.

    Article  Google Scholar 

  67. 67.

    Wang K. C.Y. Level set methods for computational prototyping with application to hemodynamic modeling. PhD thesis, Stanford University, 2001.

  68. 68.

    Wentzel, J. J., E. Janssen, J. Vos, J. C.H. Schuurbiers, R. Krams, P. W. Serruys, P. J. de Feyter, and C. J. Slager. Extension of increased atherosclerotic wall thickness into high shear stress regions is associated with loss of compensatory remodeling. Circulation 108(1):17–23, 2003.

    Article  PubMed  Google Scholar 

  69. 69.

    Whiting C. H., and K. E. Jansen. A stabilized finite element method for the incompressible Navier-Stokes equations using a hierarchical basis. Int. J. Numer. Methods Fluids 35(1):93–116, 2001.

    CAS  Article  Google Scholar 

  70. 70.

    Wilson, N. M., F. R. Arko, and C. A. Taylor. Predicting changes in blood flow in patient-specific operative plans for treating aortoiliac occlusive disease. Comput. Aided Surg. 10(4):257–277, 2005.

    Article  PubMed  Google Scholar 

  71. 71.

    Yang, W., F. P. Chan, V. M. Reddy, A. L. Marsden, and J. A. Feinstein. Flow simulations and validation for the first cohort of patients undergoing the Y-graft Fontan procedure. J. Thorac. Cardiovascu. Surg. 149(1):247–255, 2015.

    Article  Google Scholar 

  72. 72.

    Zhou, M., O. Sahni, H. J. Kim, C. A. Figueroa, C. A. Taylor, M. S. Shephard, and K. E. Jansen. Cardiovascular flow simulation at extreme scale. Comput. Mech., 46(1):71–82, 2010.

    CAS  Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Foundation SI2 program (Award No. 1407834 and 1562450) and in part by the NIH (Contract HHSN268201100035C).

Conflicts of Interest

The authors do not have conflicts of interest relevant to this manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Shawn C. Shadden.

Additional information

Communicated by Ender A. Finol.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Updegrove, A., Wilson, N.M., Merkow, J. et al. SimVascular: An Open Source Pipeline for Cardiovascular Simulation. Ann Biomed Eng 45, 525–541 (2017). https://doi.org/10.1007/s10439-016-1762-8

Download citation

Keywords

  • Patient-specific modeling
  • Image-based CFD
  • Hemodynamics
  • Open-source