Skip to main content

In Silico and In Vivo Experiments Reveal M-CSF Injections Accelerate Regeneration Following Muscle Laceration

Abstract

Numerous studies have pharmacologically modulated the muscle milieu in the hopes of promoting muscle regeneration; however, the timing and duration of these interventions are difficult to determine. This study utilized a combination of in silico and in vivo experiments to investigate how inflammation manipulation improves muscle recovery following injury. First, we measured macrophage populations following laceration injury in the rat tibialis anterior (TA). Then we calibrated an agent-based model (ABM) of muscle injury to mimic the observed inflammation profiles. The calibrated ABM was used to simulate macrophage and satellite stem cell (SC) dynamics, and suggested that delivering macrophage colony stimulating factor (M-CSF) prior to injury would promote SC-mediated injury recovery. Next, we performed an experiment wherein 1 day prior to injury, we injected M-CSF into the rat TA muscle. M-CSF increased the number of macrophages during the first 4 days post-injury. Furthermore, treated muscles experienced a swifter increase in the appearance of PAX7+ SCs and regenerating muscle fibers. Our study suggests that computational models of muscle injury provide novel insights into cellular dynamics during regeneration, and further, that pharmacologically altering inflammation dynamics prior to injury can accelerate the muscle regeneration process.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

References

  1. Allen, R. E., and L. K. Boxhorn. Inhibition of skeletal muscle satellite cell differentiation by transforming growth factor-beta. J. Cell. Physiol. 133:567–572, 1987.

    CAS  Article  PubMed  Google Scholar 

  2. Allen, R. E., and L. K. Boxhorn. Regulation of skeletal muscle satellite cell proliferation and differentiation by transforming growth factor-beta, insulin-like growth factor I, and fibroblast growth factor. J. Cell. Physiol. 138:311–315, 1989.

    CAS  Article  PubMed  Google Scholar 

  3. Arnold, L., A. Henry, F. Poron, Y. Baba-Amer, N. van Rooijen, A. Plonquet, R. K. Gherardi, and B. Chazaud. Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis. J. Exp. Med. 204:1057–1069, 2007.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. Bailey, A. M., B. C. Thorne, and S. M. Peirce. Multi-cell agent-based simulation of the microvasculature to study the dynamics of circulating inflammatory cell trafficking. Ann. Biomed. Eng. 35:916–936, 2007.

    Article  PubMed  Google Scholar 

  5. Bencze, M., E. Negroni, D. Vallese, H. Yacoub-Youssef, S. Chaouch, A. Wolff, A. Aamiri, J. P. Di Santo, B. Chazaud, G. Butler-Browne, W. Savino, V. Mouly, and I. Riederer. Proinflammatory macrophages enhance the regenerative capacity of human myoblasts by modifying their kinetics of proliferation and differentiation. Mol. Ther. 20:2168–2179, 2012.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. Bentzinger, C. F., Y. X. Wang, N. A. Dumont, and M. A. Rudnicki. Cellular dynamics in the muscle satellite cell niche. EMBO Rep. 14:1062–1072, 2013.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. Borselli, C., H. Storrie, F. Benesch-Lee, D. Shvartsman, C. Cezar, J. W. Lichtman, H. H. Vandenburgh, and D. J. Mooney. Functional muscle regeneration with combined delivery of angiogenesis and myogenesis factors. Proc. Natl. Acad. Sci. U.S.A. 107:3287–3292, 2010.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. Brigitte, M., C. Schilte, A. Plonquet, Y. Baba-Amer, A. Henri, C. Charlier, S. Tajbakhsh, M. Albert, R. K. Gherardi, and F. Chrétien. Muscle resident macrophages control the immune cell reaction in a mouse model of notexin-induced myoinjury. Arthritis Rheum. 62:268–279, 2010.

    CAS  Article  PubMed  Google Scholar 

  9. Chazaud, B., C. Sonnet, P. Lafuste, G. Bassez, A.-C. C. Rimaniol, F. Poron, F.-J. Authier, P. A. Dreyfus, and R. K. Gherardi. Satellite cells attract monocytes and use macrophages as a support to escape apoptosis and enhance muscle growth. J. Cell Biol. 163:1133–1143, 2003.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. Cheung, E. V., and J. G. Tidball. Administration of the non-steroidal anti-inflammatory drug ibuprofen increases macrophage concentrations but reduces necrosis during modified muscle use. Inflamm. Res. 52:170–176, 2003.

    CAS  Article  PubMed  Google Scholar 

  11. Christ, G. J., J. M. Saul, M. E. Furth, and K.-E. Andersson. The pharmacology of regenerative medicine. Pharmacol. Rev. 65:1091–1133, 2013.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Christov, C., F. Chretien, R. Abou-Khalil, G. Bassez, G. Vallet, F.-J. Authier, Y. Bassaglia, V. Shinin, S. Tajbakhsh, B. Chazaud, and R. K. Gherardi. Muscle satellite cells and endothelial cells: close neighbors and privileged partners. Mol. Biol. Cell 17:1397–1409, 2007.

    Article  Google Scholar 

  13. Corliss, B. A., M. S. Azimi, J. Munson, S. M. Peirce, and W. L. Murfee. Macrophages: an inflammatory link between angiogenesis and lymphangiogenesis. Microcirculation 23:95–121, 2016.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Corona, B. T., C. L. Ward, H. B. Baker, T. J. Walters, and G. J. Christ. Implantation of in vitro tissue engineered muscle repair constructs and bladder acellular matrices partially restore in vivo skeletal muscle function in a rat model of volumetric muscle loss injury. Tissue Eng. Part A 20:705–715, 2013.

    PubMed  PubMed Central  Google Scholar 

  15. Côté, C. H., P. Bouchard, N. van Rooijen, D. Marsolais, and E. Duchesne. Monocyte depletion increases local proliferation of macrophage subsets after skeletal muscle injury. BMC Musculoskelet. Disord. 14:359, 2013.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Deng, B., M. Wehling-Henricks, S. A. Villalta, Y. Wang, and J. G. Tidball. IL-10 triggers changes in macrophage phenotype that promote muscle growth and regeneration. J. Immunol. 189:3669–3680, 2012.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. Dumont, N. A., and J. Frenette. Macrophage colony-stimulating factor-induced macrophage differentiation promotes regrowth in atrophied skeletal muscles and C2C12 myotubes. Am. J. Pathol. 182:505–515, 2013.

    CAS  Article  PubMed  Google Scholar 

  18. Fadok, V. A., D. L. Bratton, A. Konowal, P. W. Freed, J. Y. Westcott, and P. M. Henson. Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-beta, PGE2, and PAF. J. Clin. Invest. 101:890–898, 1998.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. Fujita, R., F. Kawano, T. Ohira, N. Nakai, T. Shibaguchi, N. Nishimoto, Y. Ohira, and R. Fujita. Anti-interleukin-6 receptor antibody (MR16-1) promotes muscle regeneration via modulation of gene expressions in infiltrated macrophages. Biochim. Biophys. Acta 1840(10):3170–3180, 2014.

    CAS  Article  PubMed  Google Scholar 

  20. Fukushima, K., N. Badlani, A. Usas, F. Riano, F. Fu, and J. Huard. The use of an antifibrosis agent to improve muscle recovery after laceration. Am. J. Sports Med. 29:394–402, 2001.

    CAS  PubMed  Google Scholar 

  21. Germani, A., A. Di Carlo, A. Mangoni, S. Straino, C. Giacinti, P. Turrini, P. Biglioli, and M. C. Capogrossi. Vascular endothelial growth factor modulates skeletal myoblast function. Am. J. Pathol. 163:1417–1428, 2003.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. Gopalakrishnan, V., M. Kim, and G. An. Using an agent-based model to examine the role of dynamic bacterial virulence potential in the pathogenesis of surgical site infection. Adv. Wound Care 2:510–526, 2013.

    Article  Google Scholar 

  23. Gordon, S. Alternative activation of macrophages. Nat. Rev. Immunol. 3:23–35, 2003.

    CAS  Article  PubMed  Google Scholar 

  24. Gordy, C., H. Pua, G. D. Sempowski, and Y. W. He. Regulation of steady-state neutrophil homeostasis by macrophages. Blood 117:618–629, 2011.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. Hamilton, J. A. Colony-stimulating factors in inflammation and autoimmunity. Nat. Rev. Immunol. 8:533–544, 2008.

    CAS  Article  PubMed  Google Scholar 

  26. Hara, M., S. Yuasa, K. Shimoji, T. Onizuka, N. Hayashiji, Y. Ohno, T. Arai, F. Hattori, R. Kaneda, K. Kimura, S. Makino, M. Sano, and K. Fukuda. G-CSF influences mouse skeletal muscle development and regeneration by stimulating myoblast proliferation. J. Exp. Med. 208:715–727, 2011.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. Hurme, T., and H. Kalimo. Activation of myogenic precursor cells after muscle injury. Med. Sci. Sports Exerc. 24:197–205, 1992.

    CAS  Article  PubMed  Google Scholar 

  28. Järvinen, T. A. H., T. L. N. Järvinen, M. Kääriäinen, H. Kalimo, and M. Järvinen. Muscle injuries: biology and treatment. Am. J. Sports Med. 33:745–764, 2005.

    Article  PubMed  Google Scholar 

  29. Kaplanski, G., V. Marin, F. Montero-Julian, A. Mantovani, and C. Farnarier. IL-6: a regulator of the transition from neutrophil to monocyte recruitment during inflammation. Trends Immunol. 24:25–29, 2003.

    CAS  Article  PubMed  Google Scholar 

  30. Lu, H., D. Huang, N. Saederup, I. F. Charo, R. M. Ransohoff, and L. Zhou. Macrophages recruited via CCR2 produce insulin-like growth factor-1 to repair acute skeletal muscle injury. FASEB J. 25:358–369, 2011.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. Maas, H., and P. A. Huijing. Effects of tendon and muscle belly dissection on muscular force transmission following tendon transfer in the rat. J. Biomech. 45:289–296, 2012.

    Article  PubMed  Google Scholar 

  32. Martin, K. S., K. M. Virgilio, S. M. Peirce, and S. S. Blemker. Computational modeling of muscle regeneration and adaptation to advance muscle tissue regeneration strategies. Cells Tissues Organs, in press, 2016. http://www.karger.com/Book/Home/272023.

  33. Martin, K. S., S. S. Blemker, and S. M. Peirce. Agent-based computational model investigates muscle-specific responses to disuse-induced atrophy. J. Appl. Physiol. 118:1299–1309, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  34. McLennan, I. S. Degenerating and regenerating skeletal muscles contain several subpopulations of macrophages with distinct spatial and temporal distributions. J. Anat. 188:17–28, 1996.

    PubMed  PubMed Central  Google Scholar 

  35. Meneghini, R. M., M. W. Pagnano, R. T. Trousdale, and W. J. Hozack. Muscle damage during MIS total hip arthroplasty: Smith-Petersen versus posterior approach. Clin. Orthop. Relat. Res. 453:293–298, 2006.

    Article  PubMed  Google Scholar 

  36. Menetrey, J., C. Kasemkijwattana, C. S. Day, P. Bosch, M. Vogt, F. H. Fu, M. S. Moreland, and J. Huard. Growth factors improve muscle healing in vivo. J. Bone Joint Surg. Br. 82:131–137, 2000.

    CAS  Article  PubMed  Google Scholar 

  37. Miller, K. J., D. Thaloor, S. Matteson, and G. K. Pavlath. Hepatocyte growth factor affects satellite cell activation and differentiation in regenerating skeletal muscle. Am. J. Physiol. Cell Physiol. 278:C174–C181, 2000.

    CAS  PubMed  Google Scholar 

  38. Mosser, D. M., and J. P. Edwards. Exploring the full spectrum of macrophage activation. Nat. Rev. Immunol. 8:958–969, 2008.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  39. Motohashi, N., A. Uezumi, E. Yada, S. Fukada, K. Fukushima, K. Imaizumi, Y. Miyagoe-Suzuki, and S. Takeda. Muscle CD31(−) CD45(−) side population cells promote muscle regeneration by stimulating proliferation and migration of myoblasts. Am. J. Pathol. 173:781–791, 2008.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  40. Mueller, M., C. Leonhard, K. Wacker, E. B. Ringelstein, M. Okabe, W. F. Hickey, and R. Kiefer. Macrophage response to peripheral nerve injury: the quantitative contribution of resident and hematogenous macrophages. Lab. Investig. 83:175–185, 2003.

    Article  PubMed  Google Scholar 

  41. Muñoz-Cánoves, P., C. Scheele, B. K. Pedersen, and A. L. Serrano. Interleukin-6 myokine signaling in skeletal muscle: a double-edged sword? FEBS J. 280:4131–4148, 2013.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Murphy, M. M., J. A. Lawson, S. J. Mathew, D. A. Hutcheson, and G. Kardon. Satellite cells, connective tissue fibroblasts and their interactions are crucial for muscle regeneration. Development 138:3625–3637, 2011.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  43. Nacu, N., I. G. Luzina, K. Highsmith, V. Lockatell, K. Pochetuhen, Z. A. Cooper, M. P. Gillmeister, N. W. Todd, and S. P. Atamas. Macrophages produce TGF-beta-induced (beta-ig-h3) following ingestion of apoptotic cells and regulate MMP14 levels and collagen turnover in fibroblasts. J. Immunol. 180:5036–5044, 2008.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  44. Novak, M. L., and T. J. Koh. Macrophage phenotypes during tissue repair. J. Leukoc. Biol. 93:875–881, 2013.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  45. Nozaki, M., Y. Li, J. Zhu, F. Ambrosio, K. Uehara, F. H. Fu, and J. Huard. Improved muscle healing after contusion injury by the inhibitory effect of suramin on myostatin, a negative regulator of muscle growth. Am. J. Sports Med. 36:2354–2362, 2008.

    Article  PubMed  Google Scholar 

  46. Rossi, R., A. Maiello, M. Bruzzone, D. E. Bonasia, D. Blonna, and F. Castoldi. Muscle damage during minimally invasive surgical total knee arthroplasty traditional versus optimized subvastus approach. Knee 18:254–258, 2011.

    Article  PubMed  Google Scholar 

  47. Sato, K., Y. Li, W. Foster, K. Fukushima, N. Badlani, N. Adachi, A. Usas, F. H. Fu, and J. Huard. Improvement of muscle healing through enhancement of muscle regeneration and prevention of fibrosis. Muscle and Nerve 28:365–372, 2003.

    CAS  Article  PubMed  Google Scholar 

  48. Schabort, E. J., M. Van Der Merwe, and C. U. Niesler. TGF-b isoforms inhibit IGF-1-induced migration and regulate terminal differentiation in a cell-specific manner. J. Muscle Res. Cell Motil. 31:359–367, 2011.

    CAS  Article  PubMed  Google Scholar 

  49. Serrano, A. L., B. Baeza-Raja, E. Perdiguero, M. Jardí, and P. Muñoz-Cánoves. Interleukin-6 is an essential regulator of satellite cell-mediated skeletal muscle hypertrophy. Cell Metab. 7:33–44, 2008.

    CAS  Article  PubMed  Google Scholar 

  50. Shen, W., V. Prisk, Y. Li, W. Foster, and J. Huard. Inhibited skeletal muscle healing in cyclooxygenase-2 gene-deficient mice: the role of PGE 2 and PGF 2alpha. J. Appl. Physiol. 101:1215–1221, 2006.

    CAS  Article  PubMed  Google Scholar 

  51. Siegel, A. L., K. Atchison, K. E. Fisher, G. E. Davis, and D. D. W. Cornelison. 3D timelapse analysis of muscle satellite cell motility. Stem Cells 27:2527–2538, 2009.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  52. Smeulders, M. J. C., and M. Kreulen. Myofascial force transmission and tendon transfer for patients suffering from spastic paresis: a review and some new observations. J. Electromyogr. Kinesiol. 17:644–656, 2007.

    Article  PubMed  Google Scholar 

  53. Song, E., N. Ouyang, M. Hörbelt, B. Antus, M. Wang, and M. S. Exton. Influence of alternatively and classically activated macrophages on fibrogenic activities of human fibroblasts. Cell. Immunol. 204:19–28, 2000.

    CAS  Article  PubMed  Google Scholar 

  54. Spitzer, M. H., P. F. Gherardini, G. K. Fragiadakis, N. Bhattacharya, R. T. Yuan, A. N. Hotson, R. Finck, Y. Carmi, E. R. Zunder, W. J. Fantl, S. C. Bendall, E. G. Engleman, and G. P. Nolan. An interactive reference framework for modeling a dynamic immune system. Science 349:1259425, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Strle, K., S. R. Broussard, R. H. McCusker, W. H. Shen, R. W. Johnson, G. G. Freund, R. Dantzer, and K. W. Kelley. Proinflammatory cytokine impairment of insulin-like growth factor I-induced protein synthesis in skeletal muscle myoblasts requires ceramide. Endocrinology 145:4592–4602, 2004.

    CAS  Article  PubMed  Google Scholar 

  56. Strle, K., R. H. McCusker, L. Tran, A. King, R. W. Johnson, G. G. Freund, R. Dantzer, and K. W. Kelley. Novel activity of an anti-inflammatory cytokine: IL-10 prevents TNFα-induced resistance to IGF-I in myoblasts. J. Neuroimmunol. 188:48–55, 2007.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  57. Takeuchi, K., T. Hatade, S. Wakamiya, N. Fujita, T. Arakawa, and A. Miki. Heat stress promotes skeletal muscle regeneration after crush injury in rats. Acta Histochem. 116:327–334, 2014.

    CAS  Article  PubMed  Google Scholar 

  58. Thorne, B. C., A. M. Bailey, D. W. DeSimone, and S. M. Peirce. Agent-based modeling of multicell morphogenic processes during development. Birth Defects Res. C. Embryo Today 81:344–353, 2007.

    CAS  Article  PubMed  Google Scholar 

  59. Tidball, J. G., and S. A. Villalta. Regulatory interactions between muscle and the immune system during muscle regeneration. Am. J. Physiol. Regul. Integr. Comp. Physiol. 298:R1173–R1187, 2010.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  60. Wang, H., D. W. Melton, L. Porter, Z. U. Sarwar, L. M. McManus, and P. K. Shireman. Altered macrophage phenotype transition impairs skeletal muscle regeneration. Am. J. Pathol. 184:1167–1184, 2014.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  61. Wu, L. Y. L. Yu, R. D. Galiano, S. I. Roth, and T. a Mustoe. Macrophage colony-stimulating factor accelerates wound healing and upregulates TGF-beta1 mRNA levels through tissue macrophages. J. Surg. Res. 72:162–169, 1997.

    CAS  Article  PubMed  Google Scholar 

  62. Yablonka-Reuveni, Z., T. M. Balestreri, and D. F. Bowen-Pope. Regulation of proliferation and differentiation of myoblasts derived from adult mouse skeletal muscle by specific isoforms of PDGF. J. Cell Biol. 111:1623–1629, 1990.

    CAS  Article  PubMed  Google Scholar 

  63. Yin, H., F. Price, and M. A. Rudnicki. satellite cells and the muscle stem cell niche. Physiol. Rev. 93:23–67, 2013.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  64. Zeng, L., Y. Akasaki, K. Sato, N. Ouchi, Y. Izumiya, and K. Walsh. Insulin-like 6 is induced by muscle injury and functions as a regenerative factor. J. Biol. Chem. 285:36060–36069, 2010.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported in part by NSF Grant No. 1235244.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvia S. Blemker.

Additional information

Associate Editor Aleksander S. Popel oversaw the review of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 181 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Martin, K.S., Kegelman, C.D., Virgilio, K.M. et al. In Silico and In Vivo Experiments Reveal M-CSF Injections Accelerate Regeneration Following Muscle Laceration. Ann Biomed Eng 45, 747–760 (2017). https://doi.org/10.1007/s10439-016-1707-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-016-1707-2

Keywords

  • Muscle regeneration
  • Inflammation
  • Agent-based model
  • Computational model
  • Macrophages
  • Regenerative pharmacology
  • Satellite stem cells