Allen, R. E., and L. K. Boxhorn. Inhibition of skeletal muscle satellite cell differentiation by transforming growth factor-beta. J. Cell. Physiol. 133:567–572, 1987.
CAS
Article
PubMed
Google Scholar
Allen, R. E., and L. K. Boxhorn. Regulation of skeletal muscle satellite cell proliferation and differentiation by transforming growth factor-beta, insulin-like growth factor I, and fibroblast growth factor. J. Cell. Physiol. 138:311–315, 1989.
CAS
Article
PubMed
Google Scholar
Arnold, L., A. Henry, F. Poron, Y. Baba-Amer, N. van Rooijen, A. Plonquet, R. K. Gherardi, and B. Chazaud. Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis. J. Exp. Med. 204:1057–1069, 2007.
CAS
Article
PubMed
PubMed Central
Google Scholar
Bailey, A. M., B. C. Thorne, and S. M. Peirce. Multi-cell agent-based simulation of the microvasculature to study the dynamics of circulating inflammatory cell trafficking. Ann. Biomed. Eng. 35:916–936, 2007.
Article
PubMed
Google Scholar
Bencze, M., E. Negroni, D. Vallese, H. Yacoub-Youssef, S. Chaouch, A. Wolff, A. Aamiri, J. P. Di Santo, B. Chazaud, G. Butler-Browne, W. Savino, V. Mouly, and I. Riederer. Proinflammatory macrophages enhance the regenerative capacity of human myoblasts by modifying their kinetics of proliferation and differentiation. Mol. Ther. 20:2168–2179, 2012.
CAS
Article
PubMed
PubMed Central
Google Scholar
Bentzinger, C. F., Y. X. Wang, N. A. Dumont, and M. A. Rudnicki. Cellular dynamics in the muscle satellite cell niche. EMBO Rep. 14:1062–1072, 2013.
CAS
Article
PubMed
PubMed Central
Google Scholar
Borselli, C., H. Storrie, F. Benesch-Lee, D. Shvartsman, C. Cezar, J. W. Lichtman, H. H. Vandenburgh, and D. J. Mooney. Functional muscle regeneration with combined delivery of angiogenesis and myogenesis factors. Proc. Natl. Acad. Sci. U.S.A. 107:3287–3292, 2010.
CAS
Article
PubMed
PubMed Central
Google Scholar
Brigitte, M., C. Schilte, A. Plonquet, Y. Baba-Amer, A. Henri, C. Charlier, S. Tajbakhsh, M. Albert, R. K. Gherardi, and F. Chrétien. Muscle resident macrophages control the immune cell reaction in a mouse model of notexin-induced myoinjury. Arthritis Rheum. 62:268–279, 2010.
CAS
Article
PubMed
Google Scholar
Chazaud, B., C. Sonnet, P. Lafuste, G. Bassez, A.-C. C. Rimaniol, F. Poron, F.-J. Authier, P. A. Dreyfus, and R. K. Gherardi. Satellite cells attract monocytes and use macrophages as a support to escape apoptosis and enhance muscle growth. J. Cell Biol. 163:1133–1143, 2003.
CAS
Article
PubMed
PubMed Central
Google Scholar
Cheung, E. V., and J. G. Tidball. Administration of the non-steroidal anti-inflammatory drug ibuprofen increases macrophage concentrations but reduces necrosis during modified muscle use. Inflamm. Res. 52:170–176, 2003.
CAS
Article
PubMed
Google Scholar
Christ, G. J., J. M. Saul, M. E. Furth, and K.-E. Andersson. The pharmacology of regenerative medicine. Pharmacol. Rev. 65:1091–1133, 2013.
Article
PubMed
PubMed Central
Google Scholar
Christov, C., F. Chretien, R. Abou-Khalil, G. Bassez, G. Vallet, F.-J. Authier, Y. Bassaglia, V. Shinin, S. Tajbakhsh, B. Chazaud, and R. K. Gherardi. Muscle satellite cells and endothelial cells: close neighbors and privileged partners. Mol. Biol. Cell 17:1397–1409, 2007.
Article
Google Scholar
Corliss, B. A., M. S. Azimi, J. Munson, S. M. Peirce, and W. L. Murfee. Macrophages: an inflammatory link between angiogenesis and lymphangiogenesis. Microcirculation 23:95–121, 2016.
Article
PubMed
PubMed Central
Google Scholar
Corona, B. T., C. L. Ward, H. B. Baker, T. J. Walters, and G. J. Christ. Implantation of in vitro tissue engineered muscle repair constructs and bladder acellular matrices partially restore in vivo skeletal muscle function in a rat model of volumetric muscle loss injury. Tissue Eng. Part A 20:705–715, 2013.
PubMed
PubMed Central
Google Scholar
Côté, C. H., P. Bouchard, N. van Rooijen, D. Marsolais, and E. Duchesne. Monocyte depletion increases local proliferation of macrophage subsets after skeletal muscle injury. BMC Musculoskelet. Disord. 14:359, 2013.
Article
PubMed
PubMed Central
Google Scholar
Deng, B., M. Wehling-Henricks, S. A. Villalta, Y. Wang, and J. G. Tidball. IL-10 triggers changes in macrophage phenotype that promote muscle growth and regeneration. J. Immunol. 189:3669–3680, 2012.
CAS
Article
PubMed
PubMed Central
Google Scholar
Dumont, N. A., and J. Frenette. Macrophage colony-stimulating factor-induced macrophage differentiation promotes regrowth in atrophied skeletal muscles and C2C12 myotubes. Am. J. Pathol. 182:505–515, 2013.
CAS
Article
PubMed
Google Scholar
Fadok, V. A., D. L. Bratton, A. Konowal, P. W. Freed, J. Y. Westcott, and P. M. Henson. Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-beta, PGE2, and PAF. J. Clin. Invest. 101:890–898, 1998.
CAS
Article
PubMed
PubMed Central
Google Scholar
Fujita, R., F. Kawano, T. Ohira, N. Nakai, T. Shibaguchi, N. Nishimoto, Y. Ohira, and R. Fujita. Anti-interleukin-6 receptor antibody (MR16-1) promotes muscle regeneration via modulation of gene expressions in infiltrated macrophages. Biochim. Biophys. Acta 1840(10):3170–3180, 2014.
CAS
Article
PubMed
Google Scholar
Fukushima, K., N. Badlani, A. Usas, F. Riano, F. Fu, and J. Huard. The use of an antifibrosis agent to improve muscle recovery after laceration. Am. J. Sports Med. 29:394–402, 2001.
CAS
PubMed
Google Scholar
Germani, A., A. Di Carlo, A. Mangoni, S. Straino, C. Giacinti, P. Turrini, P. Biglioli, and M. C. Capogrossi. Vascular endothelial growth factor modulates skeletal myoblast function. Am. J. Pathol. 163:1417–1428, 2003.
CAS
Article
PubMed
PubMed Central
Google Scholar
Gopalakrishnan, V., M. Kim, and G. An. Using an agent-based model to examine the role of dynamic bacterial virulence potential in the pathogenesis of surgical site infection. Adv. Wound Care 2:510–526, 2013.
Article
Google Scholar
Gordon, S. Alternative activation of macrophages. Nat. Rev. Immunol. 3:23–35, 2003.
CAS
Article
PubMed
Google Scholar
Gordy, C., H. Pua, G. D. Sempowski, and Y. W. He. Regulation of steady-state neutrophil homeostasis by macrophages. Blood 117:618–629, 2011.
CAS
Article
PubMed
PubMed Central
Google Scholar
Hamilton, J. A. Colony-stimulating factors in inflammation and autoimmunity. Nat. Rev. Immunol. 8:533–544, 2008.
CAS
Article
PubMed
Google Scholar
Hara, M., S. Yuasa, K. Shimoji, T. Onizuka, N. Hayashiji, Y. Ohno, T. Arai, F. Hattori, R. Kaneda, K. Kimura, S. Makino, M. Sano, and K. Fukuda. G-CSF influences mouse skeletal muscle development and regeneration by stimulating myoblast proliferation. J. Exp. Med. 208:715–727, 2011.
CAS
Article
PubMed
PubMed Central
Google Scholar
Hurme, T., and H. Kalimo. Activation of myogenic precursor cells after muscle injury. Med. Sci. Sports Exerc. 24:197–205, 1992.
CAS
Article
PubMed
Google Scholar
Järvinen, T. A. H., T. L. N. Järvinen, M. Kääriäinen, H. Kalimo, and M. Järvinen. Muscle injuries: biology and treatment. Am. J. Sports Med. 33:745–764, 2005.
Article
PubMed
Google Scholar
Kaplanski, G., V. Marin, F. Montero-Julian, A. Mantovani, and C. Farnarier. IL-6: a regulator of the transition from neutrophil to monocyte recruitment during inflammation. Trends Immunol. 24:25–29, 2003.
CAS
Article
PubMed
Google Scholar
Lu, H., D. Huang, N. Saederup, I. F. Charo, R. M. Ransohoff, and L. Zhou. Macrophages recruited via CCR2 produce insulin-like growth factor-1 to repair acute skeletal muscle injury. FASEB J. 25:358–369, 2011.
CAS
Article
PubMed
PubMed Central
Google Scholar
Maas, H., and P. A. Huijing. Effects of tendon and muscle belly dissection on muscular force transmission following tendon transfer in the rat. J. Biomech. 45:289–296, 2012.
Article
PubMed
Google Scholar
Martin, K. S., K. M. Virgilio, S. M. Peirce, and S. S. Blemker. Computational modeling of muscle regeneration and adaptation to advance muscle tissue regeneration strategies. Cells Tissues Organs, in press, 2016. http://www.karger.com/Book/Home/272023.
Martin, K. S., S. S. Blemker, and S. M. Peirce. Agent-based computational model investigates muscle-specific responses to disuse-induced atrophy. J. Appl. Physiol. 118:1299–1309, 2015.
Article
PubMed
PubMed Central
Google Scholar
McLennan, I. S. Degenerating and regenerating skeletal muscles contain several subpopulations of macrophages with distinct spatial and temporal distributions. J. Anat. 188:17–28, 1996.
PubMed
PubMed Central
Google Scholar
Meneghini, R. M., M. W. Pagnano, R. T. Trousdale, and W. J. Hozack. Muscle damage during MIS total hip arthroplasty: Smith-Petersen versus posterior approach. Clin. Orthop. Relat. Res. 453:293–298, 2006.
Article
PubMed
Google Scholar
Menetrey, J., C. Kasemkijwattana, C. S. Day, P. Bosch, M. Vogt, F. H. Fu, M. S. Moreland, and J. Huard. Growth factors improve muscle healing in vivo. J. Bone Joint Surg. Br. 82:131–137, 2000.
CAS
Article
PubMed
Google Scholar
Miller, K. J., D. Thaloor, S. Matteson, and G. K. Pavlath. Hepatocyte growth factor affects satellite cell activation and differentiation in regenerating skeletal muscle. Am. J. Physiol. Cell Physiol. 278:C174–C181, 2000.
CAS
PubMed
Google Scholar
Mosser, D. M., and J. P. Edwards. Exploring the full spectrum of macrophage activation. Nat. Rev. Immunol. 8:958–969, 2008.
CAS
Article
PubMed
PubMed Central
Google Scholar
Motohashi, N., A. Uezumi, E. Yada, S. Fukada, K. Fukushima, K. Imaizumi, Y. Miyagoe-Suzuki, and S. Takeda. Muscle CD31(−) CD45(−) side population cells promote muscle regeneration by stimulating proliferation and migration of myoblasts. Am. J. Pathol. 173:781–791, 2008.
CAS
Article
PubMed
PubMed Central
Google Scholar
Mueller, M., C. Leonhard, K. Wacker, E. B. Ringelstein, M. Okabe, W. F. Hickey, and R. Kiefer. Macrophage response to peripheral nerve injury: the quantitative contribution of resident and hematogenous macrophages. Lab. Investig. 83:175–185, 2003.
Article
PubMed
Google Scholar
Muñoz-Cánoves, P., C. Scheele, B. K. Pedersen, and A. L. Serrano. Interleukin-6 myokine signaling in skeletal muscle: a double-edged sword? FEBS J. 280:4131–4148, 2013.
Article
PubMed
PubMed Central
Google Scholar
Murphy, M. M., J. A. Lawson, S. J. Mathew, D. A. Hutcheson, and G. Kardon. Satellite cells, connective tissue fibroblasts and their interactions are crucial for muscle regeneration. Development 138:3625–3637, 2011.
CAS
Article
PubMed
PubMed Central
Google Scholar
Nacu, N., I. G. Luzina, K. Highsmith, V. Lockatell, K. Pochetuhen, Z. A. Cooper, M. P. Gillmeister, N. W. Todd, and S. P. Atamas. Macrophages produce TGF-beta-induced (beta-ig-h3) following ingestion of apoptotic cells and regulate MMP14 levels and collagen turnover in fibroblasts. J. Immunol. 180:5036–5044, 2008.
CAS
Article
PubMed
PubMed Central
Google Scholar
Novak, M. L., and T. J. Koh. Macrophage phenotypes during tissue repair. J. Leukoc. Biol. 93:875–881, 2013.
CAS
Article
PubMed
PubMed Central
Google Scholar
Nozaki, M., Y. Li, J. Zhu, F. Ambrosio, K. Uehara, F. H. Fu, and J. Huard. Improved muscle healing after contusion injury by the inhibitory effect of suramin on myostatin, a negative regulator of muscle growth. Am. J. Sports Med. 36:2354–2362, 2008.
Article
PubMed
Google Scholar
Rossi, R., A. Maiello, M. Bruzzone, D. E. Bonasia, D. Blonna, and F. Castoldi. Muscle damage during minimally invasive surgical total knee arthroplasty traditional versus optimized subvastus approach. Knee 18:254–258, 2011.
Article
PubMed
Google Scholar
Sato, K., Y. Li, W. Foster, K. Fukushima, N. Badlani, N. Adachi, A. Usas, F. H. Fu, and J. Huard. Improvement of muscle healing through enhancement of muscle regeneration and prevention of fibrosis. Muscle and Nerve 28:365–372, 2003.
CAS
Article
PubMed
Google Scholar
Schabort, E. J., M. Van Der Merwe, and C. U. Niesler. TGF-b isoforms inhibit IGF-1-induced migration and regulate terminal differentiation in a cell-specific manner. J. Muscle Res. Cell Motil. 31:359–367, 2011.
CAS
Article
PubMed
Google Scholar
Serrano, A. L., B. Baeza-Raja, E. Perdiguero, M. Jardí, and P. Muñoz-Cánoves. Interleukin-6 is an essential regulator of satellite cell-mediated skeletal muscle hypertrophy. Cell Metab. 7:33–44, 2008.
CAS
Article
PubMed
Google Scholar
Shen, W., V. Prisk, Y. Li, W. Foster, and J. Huard. Inhibited skeletal muscle healing in cyclooxygenase-2 gene-deficient mice: the role of PGE 2 and PGF 2alpha. J. Appl. Physiol. 101:1215–1221, 2006.
CAS
Article
PubMed
Google Scholar
Siegel, A. L., K. Atchison, K. E. Fisher, G. E. Davis, and D. D. W. Cornelison. 3D timelapse analysis of muscle satellite cell motility. Stem Cells 27:2527–2538, 2009.
CAS
Article
PubMed
PubMed Central
Google Scholar
Smeulders, M. J. C., and M. Kreulen. Myofascial force transmission and tendon transfer for patients suffering from spastic paresis: a review and some new observations. J. Electromyogr. Kinesiol. 17:644–656, 2007.
Article
PubMed
Google Scholar
Song, E., N. Ouyang, M. Hörbelt, B. Antus, M. Wang, and M. S. Exton. Influence of alternatively and classically activated macrophages on fibrogenic activities of human fibroblasts. Cell. Immunol. 204:19–28, 2000.
CAS
Article
PubMed
Google Scholar
Spitzer, M. H., P. F. Gherardini, G. K. Fragiadakis, N. Bhattacharya, R. T. Yuan, A. N. Hotson, R. Finck, Y. Carmi, E. R. Zunder, W. J. Fantl, S. C. Bendall, E. G. Engleman, and G. P. Nolan. An interactive reference framework for modeling a dynamic immune system. Science 349:1259425, 2015.
Article
PubMed
PubMed Central
Google Scholar
Strle, K., S. R. Broussard, R. H. McCusker, W. H. Shen, R. W. Johnson, G. G. Freund, R. Dantzer, and K. W. Kelley. Proinflammatory cytokine impairment of insulin-like growth factor I-induced protein synthesis in skeletal muscle myoblasts requires ceramide. Endocrinology 145:4592–4602, 2004.
CAS
Article
PubMed
Google Scholar
Strle, K., R. H. McCusker, L. Tran, A. King, R. W. Johnson, G. G. Freund, R. Dantzer, and K. W. Kelley. Novel activity of an anti-inflammatory cytokine: IL-10 prevents TNFα-induced resistance to IGF-I in myoblasts. J. Neuroimmunol. 188:48–55, 2007.
CAS
Article
PubMed
PubMed Central
Google Scholar
Takeuchi, K., T. Hatade, S. Wakamiya, N. Fujita, T. Arakawa, and A. Miki. Heat stress promotes skeletal muscle regeneration after crush injury in rats. Acta Histochem. 116:327–334, 2014.
CAS
Article
PubMed
Google Scholar
Thorne, B. C., A. M. Bailey, D. W. DeSimone, and S. M. Peirce. Agent-based modeling of multicell morphogenic processes during development. Birth Defects Res. C. Embryo Today 81:344–353, 2007.
CAS
Article
PubMed
Google Scholar
Tidball, J. G., and S. A. Villalta. Regulatory interactions between muscle and the immune system during muscle regeneration. Am. J. Physiol. Regul. Integr. Comp. Physiol. 298:R1173–R1187, 2010.
CAS
Article
PubMed
PubMed Central
Google Scholar
Wang, H., D. W. Melton, L. Porter, Z. U. Sarwar, L. M. McManus, and P. K. Shireman. Altered macrophage phenotype transition impairs skeletal muscle regeneration. Am. J. Pathol. 184:1167–1184, 2014.
CAS
Article
PubMed
PubMed Central
Google Scholar
Wu, L. Y. L. Yu, R. D. Galiano, S. I. Roth, and T. a Mustoe. Macrophage colony-stimulating factor accelerates wound healing and upregulates TGF-beta1 mRNA levels through tissue macrophages. J. Surg. Res. 72:162–169, 1997.
CAS
Article
PubMed
Google Scholar
Yablonka-Reuveni, Z., T. M. Balestreri, and D. F. Bowen-Pope. Regulation of proliferation and differentiation of myoblasts derived from adult mouse skeletal muscle by specific isoforms of PDGF. J. Cell Biol. 111:1623–1629, 1990.
CAS
Article
PubMed
Google Scholar
Yin, H., F. Price, and M. A. Rudnicki. satellite cells and the muscle stem cell niche. Physiol. Rev. 93:23–67, 2013.
CAS
Article
PubMed
PubMed Central
Google Scholar
Zeng, L., Y. Akasaki, K. Sato, N. Ouchi, Y. Izumiya, and K. Walsh. Insulin-like 6 is induced by muscle injury and functions as a regenerative factor. J. Biol. Chem. 285:36060–36069, 2010.
CAS
Article
PubMed
PubMed Central
Google Scholar