Skip to main content
Log in

Reduced-Dimension Modeling Approach for Simulating Recruitment/De-recruitment Dynamics in the Lung

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Acute respiratory distress syndrome is a pulmonary disease that requires the use of mechanical ventilation for patient recovery. However, this can lead to development of ventilator-induced lung injury caused by the over-distension of alveolar tissue and by the repetitive closure (de-recruitment) and reopening (recruitment) of airways. In this study, we developed a multi-scale model of the lung from a reduced-dimension approach to investigate the dynamics of ventilation in the lung during airway collapse and reopening. The model consisted of an asymmetric network geometry with 16 generations of liquid-lined airways with airflow driven by a variable pleural pressure. During the respiratory cycle changes in airway radii and film thickness yield the formation of liquid plugs that propagate and rupture throughout the airway network. Simulations were conducted with constant surface tension values \(15 \le \gamma \le 25\) dyn/cm. It was observed that the time onset of plug creation and rupture depended on the surface tension, as well as the plug aggregation/splitting behavior at bifurcations. Additionally, the plug propagation behavior was significantly influenced by presence of plugs in adjacent airways (i.e. parent and daughters) that affected the driving pressure distribution locally at bifurcations and resulted in complex aggregation and splitting behavior. This model provides an approach that has the ability to simulate normal and pathophysiological lung conditions with the potential to be used in personalized clinical medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Albert, S. P., J. DiRocco, G. B. Allen, J. H. Bates, R. Lafollette, B. D. Kubiak, J. Fischer, S. Maroney, and G. F. Nieman. The role of time and pressure on alveolar recruitment. J. Appl. Physiol. 106(757–765):2009, 1985.

    Google Scholar 

  2. Alencar, A. M., S. V. Buldyrev, A. Majumdar, H. E. Stanley, and B. Suki. Avalanche dynamics of crackle sound in the lung. Phys. Rev. Lett. 87:088101, 2001.

    Article  CAS  PubMed  Google Scholar 

  3. Alencar, A. M., A. Majumdar, Z. Hantos, S. V. Buldyrev, H. E. Stanley, and B. Suki. Crackles and instabilities during lung inflation. Physica A 357:18–26, 2005.

    Article  Google Scholar 

  4. Bates, J. H., and A.-M. Lauzon. Parenchymal tethering, airway wall stiffness, and the dynamics of bronchoconstriction. J. Appl. Physiol. 102:1912–1920, 2007.

    Article  PubMed  Google Scholar 

  5. Breen, B. J., G. M. Donovan, J. Sneyd, and M. H. Tawhai. Quantifying parenchymal tethering in a finite element simulation of a human lung slice under bronchoconstriction. Respir. Physiol. Neurobiol. 183:85–90, 2012.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Florens, M., B. Sapoval, and M. Filoche. An anatomical and functional model of the human tracheobronchial tree. J. Appl. Physiol. 110:756–763, 2011.

    Article  CAS  PubMed  Google Scholar 

  7. Fujioka, H., and J. B. Grotberg. Steady propagation of a liquid plug in a two-dimensional channel. J. Biomech. Eng. 126:567–577, 2004.

    Article  PubMed  Google Scholar 

  8. Fujioka, H., D. Halpern, and D. P. Gaver, 3rd. A model of surfactant-induced surface tension effects on the parenchymal tethering of pulmonary airways. J. Biomech. 46:319–328, 2013.

    Article  PubMed  Google Scholar 

  9. Gauglitz, P., and C. Radke. An extended evolution equation for liquid film breakup in cylindrical capillaries. Chem. Eng. Sci. 43:1457–1465, 1988.

    Article  CAS  Google Scholar 

  10. Gaver, D. P., D. Halpern, O. E. Jensen, and J. B. Grotberg. The steady motion of a semi-infinite bubble through a flexible-walled channel. J. Fluid Mech. 319:25–65, 1996.

    Article  Google Scholar 

  11. Gaver, D., R. W. Samsel, and J. Solway. Effects of surface tension and viscosity on airway reopening. J. Appl. Physiol. 69:74–85, 1990.

    PubMed  Google Scholar 

  12. Hammond, P. Nonlinear adjustment of a thin annular film of viscous fluid surrounding a thread of another within a circular cylindrical pipe. J. Fluid Mech. 137:363–384, 1983.

    Article  CAS  Google Scholar 

  13. Higuita-Castro, N., C. Mihai, D. J. Hansford, and S. N. Ghadiali. Influence of airway wall compliance on epithelial cell injury and adhesion during interfacial flows. J. Appl. Physiol. 117(1231–1242):2014, 1985.

    Google Scholar 

  14. Horsfield, K., G. Dart, D. E. Olson, G. F. Filley, and G. Cumming. Models of the human bronchial tree. J. Appl. Physiol. 31:207–217, 1971.

    CAS  PubMed  Google Scholar 

  15. Krueger, M. A., and D. P. Gaver. A theoretical model of pulmonary surfactant multilayer collapse under oscillating area conditions. J. Colloid Interface Sci. 229:353–364, 2000.

    Article  CAS  PubMed  Google Scholar 

  16. Lambert, R. K., T. A. Wilson, R. E. Hyatt, and J. R. Rodarte. A computational model for expiratory flow. J. Appl. Physiol. Respir. Environ. Exerc. Physiol. 52:44–56, 1982.

    CAS  PubMed  Google Scholar 

  17. Otis, D. R., E. P. Ingenito, R. D. Kamm, and M. Johnson. Dynamic surface tension of surfactant TA: experiments and theory. J. Appl. Physiol. 77(2681–2688):1994, 1985.

    Google Scholar 

  18. Rogers, D. F. Airway mucus hypersecretion in asthma: an undervalued pathology? Curr. Opin. Pharmacol. 4:241–250, 2004.

    Article  CAS  PubMed  Google Scholar 

  19. Slutsky, A. S. Lung injury caused by mechanical ventilation. Chest 116:9S–15S, 1999.

    Article  CAS  PubMed  Google Scholar 

  20. Tai, C.-F., S. Bian, D. Halpern, Y. Zheng, M. Filoche, and J. Grotberg. Numerical study of flow fields in an airway closure model. J. Fluid Mech. 677:483–502, 2011.

    Article  Google Scholar 

  21. Tawhai, M. H., A. Pullan, and P. Hunter. Generation of an anatomically based three-dimensional model of the conducting airways. Ann. Biomed. Eng. 28:793–802, 2000.

    Article  Google Scholar 

  22. Verkman, A. Role of aquaporins in lung liquid physiology. Respir. Physiol. Neurobiol. 159:324–330, 2007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ware, L. B., and M. A. Matthay. The acute respiratory distress syndrome. N. Engl. J. Med. 342:1334–1349, 2000.

    Article  CAS  PubMed  Google Scholar 

  24. Widdicombe, J. Regulation of the depth and composition of airway surface liquid. J. Anat. 201:313–318, 2002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zheng, Y., H. Fujioka, S. Bian, Y. Torisawa, D. Huh, S. Takayama, and J. Grotberg. Liquid plug propagation in flexible microchannels: a small airway model. Phys. Fluids (1994–present) 21:071903, 2009.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by National Science Foundation Grant CBET-1033619 and Research Traineeship Grant DMS-1043626. Computational resources were supported in part using high performance computing (HPC) resources and services provided by Technology Services at Tulane University, New Orleans, LA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donald P. Gaver.

Additional information

Associate Editor Aleksander S. Popel oversaw the review of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 224 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ryans, J., Fujioka, H., Halpern, D. et al. Reduced-Dimension Modeling Approach for Simulating Recruitment/De-recruitment Dynamics in the Lung. Ann Biomed Eng 44, 3619–3631 (2016). https://doi.org/10.1007/s10439-016-1672-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-016-1672-9

Keywords

Navigation