Skip to main content

Biomechanical Properties and Microstructure of Heart Chambers: A Paired Comparison Study in an Ovine Model


Mechanical properties of the cardiac tissue play an important role in normal heart function. The goal of this study was to determine the passive mechanical properties of all heart chambers through a paired comparison study in an ovine model. Ovine heart was used due its physiological and anatomical similarities to human heart. A total of 189 specimens from anterior and posterior portions of the left and right ventricles, atria, and appendages underwent biaxial mechanical testing. A Fung-type strain energy function was used to fit the experimental data. Tissue behavior was quantified based on the magnitude of strain energy, as indicator of tissue stiffness, at equibiaxial strains of 0.10, 0.15, and 0.20. Statistical analysis revealed no significant difference in strain energy storage between anterior and posterior portions of each chamber, except for the right ventricle where strain energy storage in the posterior specimens were higher than the anterior specimens. Additionally, all chambers from the left side of the heart had significantly higher strain energy storage than the corresponding chambers on the right side. Furthermore, the highest to lowest stored strain energy were associated with ventricles, appendages, and atria, respectively. Microstructure of tissue specimens from different chambers was also compared using histology.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8



Left ventricle


Right ventricle


Left atrium


Right atrium


Left atrial appendage


Right atrial appendage






  1. 1.

    Abbasi, M., and A. N. Azadani. Leaflet stress and strain distributions following incomplete transcatheter aortic valve expansion. J. Biomech. 48:3663–3671, 2015.

    Article  PubMed  Google Scholar 

  2. 2.

    Bellini, C., E. S. Di Martino, and S. Federico. Mechanical behaviour of the human atria. Ann. Biomed. Eng. 41:1478–1490, 2013.

    Article  PubMed  Google Scholar 

  3. 3.

    Bellini, C., and E. S. Di Martino. A mechanical characterization of the porcine atria at the healthy stage and after ventricular tachypacing. J. Biomech. Eng. 134:021008, 2012.

    Article  PubMed  Google Scholar 

  4. 4.

    Bers, D. M. Cardiac excitation–contraction coupling. Nature 415:198–205, 2002.

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Fung, Y., K. Fronek, and P. Patitucci. Pseudoelasticity of arteries and the choice of its mathematical expression. Am. J. Physiol. Heart Circ. Physiol. 237:H620–H631, 1979.

    CAS  Google Scholar 

  6. 6.

    Genet, M., L. C. Lee, R. Nguyen, H. Haraldsson, G. Acevedo-Bolton, Z. Zhang, L. Ge, K. Ordovas, S. Kozerke, and J. M. Guccione. Distribution of normal human left ventricular myofiber stress at end diastole and end systole: a target for in silico design of heart failure treatments. J. Appl. Physiol. 117:142–152, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Grossman, W. Cardiac hypertrophy: useful adaptation or pathologic process? Am. J. Med. 69:576–584, 1980.

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Gupta, K. B., M. B. Ratcliffe, M. A. Fallert, L. H. Edmunds, Jr, and D. K. Bogen. Changes in passive mechanical stiffness of myocardial tissue with aneurysm formation. Circulation 89:2315–2326, 1994.

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Hill, M. R., M. A. Simon, D. Valdez-Jasso, W. Zhang, H. C. Champion, and M. S. Sacks. Structural and mechanical adaptations of right ventricle free wall myocardium to pressure overload. Ann. Biomed. Eng. 42(12):2451–2465, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Holzapfel, G. A., and R. W. Ogden. Constitutive modelling of passive myocardium: a structurally based framework for material characterization. Philos. Trans. A Math. Phys. Eng. Sci. 367:3445–3475, 2009.

    Article  PubMed  Google Scholar 

  11. 11.

    Huang, Y., O. Kawaguchi, B. Zeng, R. A. Carrington, C. J. Horam, T. Yuasa, N. Abdul-Hussein, and S. N. Hunyor. A stable ovine congestive heart failure model a suitable substrate for left ventricular assist device assessment. ASAIO J. 43(5):M414, 1997.

    Article  Google Scholar 

  12. 12.

    Dixon, J. A., and F. G. Spinale. Large animal models of heart failure a critical link in the translation of basic science to clinical practice. Circ. Heart Fail. 2(3):262–271, 2009.

    Article  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Kindberg, K., H. Haraldsson, A. Sigfridsson, J. Engvall, N. B. Ingels, T. Ebbers, and M. Karlsson. Myocardial strains from 3D displacement encoded magnetic resonance imaging. BMC Med. Imaging 12:9, 2012.

    Article  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Kohl, P., P. Hunter, and D. Noble. Stretch-induced changes in heart rate and rhythm: clinical observations, experiments and mathematical models. Prog. Biophys. Mol. Biol. 71:91–138, 1999.

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Kourliouros, A., I. Savelieva, A. Kiotsekoglou, M. Jahangiri, and J. Camm. Current concepts in the pathogenesis of atrial fibrillation. Am. Heart J. 157:243–252, 2009.

    Article  PubMed  Google Scholar 

  16. 16.

    Lee, L. C., S. T. Wall, D. Klepach, L. Ge, Z. Zhang, R. J. Lee, A. Hinson, J. H. Gorman, R. C. Gorman, and J. M. Guccione. Algisyl-LVR™ with coronary artery bypass grafting reduces left ventricular wall stress and improves function in the failing human heart. Int. J. Cardiol. 168:2022–2028, 2013.

    Article  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Leor, J., S. Aboulafia-Etzion, A. Dar, L. Shapiro, I. M. Barbash, A. Battler, Y. Granot, and S. Cohen. Bioengineered cardiac grafts: a new approach to repair the infarcted myocardium? Circulation 102:III-56–III-61, 2000.

    CAS  Article  Google Scholar 

  18. 18.

    Mojsejenko, D., J. R. McGarvey, S. M. Dorsey, J. H. Gorman, III, J. A. Burdick, J. J. Pilla, R. C. Gorman, and J. F. Wenk. Estimating passive mechanical properties in a myocardial infarction using MRI and finite element simulations. Biomech. Model. Mechanobiol. 14:633–647, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Moorman, A., S. Webb, N. A. Brown, W. Lamers, and R. H. Anderson. Development of the heart: (1) formation of the cardiac chambers and arterial trunks. Heart 89:806–814, 2003.

    Article  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Nikou, A., S. M. Dorsey, J. R. McGarvey, J. H. Gorman, III, J. A. Burdick, J. J. Pilla, R. C. Gorman, and J. F. Wenk. Computational modeling of healthy myocardium in diastole. Ann. Biomed. Eng. 1–13:980–992, 2015.

    Google Scholar 

  21. 21.

    Quinn, T. A. The importance of non-uniformities in mechano-electric coupling for ventricular arrhythmias. J. Interv. Card. Electrophysiol. 39:25–35, 2014.

    Article  PubMed  Google Scholar 

  22. 22.

    Ravens, U. Mechano-electric feedback and arrhythmias. Prog. Biophys. Mol. Biol. 82:255–266, 2003.

    Article  PubMed  Google Scholar 

  23. 23.

    Robertson, D., and D. Cook. Unrealistic statistics: how average constitutive coefficients can produce non-physical results. J. Mech. Behav. Biomed. Mater. 40:234–239, 2014.

    Article  PubMed  Google Scholar 

  24. 24.

    Sommer, G., A. J. Schriefl, M. Andrä, M. Sacherer, C. Viertler, H. Wolinski, and G. A. Holzapfel. Biomechanical properties and microstructure of human ventricular myocardium. Acta Biomater. 24:172–192, 2015.

    Article  PubMed  Google Scholar 

  25. 25.

    Sylva, M., M. J. van den Hoff, and A. F. Moorman. Development of the human heart. Am. J. Med. Genet. Part A 164:1347–1371, 2014.

    CAS  Article  Google Scholar 

  26. 26.

    Voelkel, N. F., R. A. Quaife, L. A. Leinwand, R. J. Barst, M. D. McGoon, D. R. Meldrum, J. Dupuis, C. S. Long, L. J. Rubin, F. W. Smart, Y. J. Suzuki, M. Gladwin, E. M. Denholm, D. B. Gail, L. National Heart, and Blood Institute Working Group on and F. Molecular Mechanisms of Right Heart. Right ventricular function and failure: report of a National Heart, Lung, and Blood Institute working group on cellular and molecular mechanisms of right heart failure. Circulation 114:1883–1891, 2006.

    Article  PubMed  Google Scholar 

  27. 27.

    Wang, F., and J. Guan. Cellular cardiomyoplasty and cardiac tissue engineering for myocardial therapy. Adv. Drug Deliv. Rev. 62:784–797, 2010.

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    Wang, B., A. Borazjani, M. Tahai, A. L. de Jongh Curry, D. T. Simionescu, J. Guan, F. To, S. H. Elder, and J. Liao. Fabrication of cardiac patch with decellularized porcine myocardial scaffold and bone marrow mononuclear cells. J. Biomed. Mater. Res. Part A 94:1100–1110, 2010.

    Google Scholar 

Download references


This work was supported by the Knoebel Center for the Study of Aging and Professional Research Opportunity Funds administered by University of Denver (Grant No. 142235).

Conflict of interest

The authors have no conflict of interest to declare.

Author information



Corresponding author

Correspondence to Ali N. Azadani.

Additional information

Associate Editor Ellen Kuhl oversaw the review of this article.



The individual coefficient sets of the four parameter Fung exponential constitutive model for all of the individual hearts (n = 19). Furthermore, the maximum Green strain values reached in the biaxial tests were shown in the table.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Javani, S., Gordon, M. & Azadani, A.N. Biomechanical Properties and Microstructure of Heart Chambers: A Paired Comparison Study in an Ovine Model. Ann Biomed Eng 44, 3266–3283 (2016).

Download citation


  • Cardiac mechanics
  • Passive mechanical behavior
  • Biaxial testing
  • Microstructure
  • Ventricle
  • Atria
  • Atrial appendage