Annals of Biomedical Engineering

, Volume 44, Issue 11, pp 3266–3283 | Cite as

Biomechanical Properties and Microstructure of Heart Chambers: A Paired Comparison Study in an Ovine Model

Article
  • 432 Downloads

Abstract

Mechanical properties of the cardiac tissue play an important role in normal heart function. The goal of this study was to determine the passive mechanical properties of all heart chambers through a paired comparison study in an ovine model. Ovine heart was used due its physiological and anatomical similarities to human heart. A total of 189 specimens from anterior and posterior portions of the left and right ventricles, atria, and appendages underwent biaxial mechanical testing. A Fung-type strain energy function was used to fit the experimental data. Tissue behavior was quantified based on the magnitude of strain energy, as indicator of tissue stiffness, at equibiaxial strains of 0.10, 0.15, and 0.20. Statistical analysis revealed no significant difference in strain energy storage between anterior and posterior portions of each chamber, except for the right ventricle where strain energy storage in the posterior specimens were higher than the anterior specimens. Additionally, all chambers from the left side of the heart had significantly higher strain energy storage than the corresponding chambers on the right side. Furthermore, the highest to lowest stored strain energy were associated with ventricles, appendages, and atria, respectively. Microstructure of tissue specimens from different chambers was also compared using histology.

Keywords

Cardiac mechanics Passive mechanical behavior Biaxial testing Microstructure Ventricle Atria Atrial appendage 

Abbreviations

LV

Left ventricle

RV

Right ventricle

LA

Left atrium

RA

Right atrium

LAA

Left atrial appendage

RAA

Right atrial appendage

Ant.

Anterior

Post.

Posterior

Notes

Acknowledgment

This work was supported by the Knoebel Center for the Study of Aging and Professional Research Opportunity Funds administered by University of Denver (Grant No. 142235).

Conflict of interest

The authors have no conflict of interest to declare.

References

  1. 1.
    Abbasi, M., and A. N. Azadani. Leaflet stress and strain distributions following incomplete transcatheter aortic valve expansion. J. Biomech. 48:3663–3671, 2015.CrossRefPubMedGoogle Scholar
  2. 2.
    Bellini, C., E. S. Di Martino, and S. Federico. Mechanical behaviour of the human atria. Ann. Biomed. Eng. 41:1478–1490, 2013.CrossRefPubMedGoogle Scholar
  3. 3.
    Bellini, C., and E. S. Di Martino. A mechanical characterization of the porcine atria at the healthy stage and after ventricular tachypacing. J. Biomech. Eng. 134:021008, 2012.CrossRefPubMedGoogle Scholar
  4. 4.
    Bers, D. M. Cardiac excitation–contraction coupling. Nature 415:198–205, 2002.CrossRefPubMedGoogle Scholar
  5. 5.
    Fung, Y., K. Fronek, and P. Patitucci. Pseudoelasticity of arteries and the choice of its mathematical expression. Am. J. Physiol. Heart Circ. Physiol. 237:H620–H631, 1979.Google Scholar
  6. 6.
    Genet, M., L. C. Lee, R. Nguyen, H. Haraldsson, G. Acevedo-Bolton, Z. Zhang, L. Ge, K. Ordovas, S. Kozerke, and J. M. Guccione. Distribution of normal human left ventricular myofiber stress at end diastole and end systole: a target for in silico design of heart failure treatments. J. Appl. Physiol. 117:142–152, 2014.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Grossman, W. Cardiac hypertrophy: useful adaptation or pathologic process? Am. J. Med. 69:576–584, 1980.CrossRefPubMedGoogle Scholar
  8. 8.
    Gupta, K. B., M. B. Ratcliffe, M. A. Fallert, L. H. Edmunds, Jr, and D. K. Bogen. Changes in passive mechanical stiffness of myocardial tissue with aneurysm formation. Circulation 89:2315–2326, 1994.CrossRefPubMedGoogle Scholar
  9. 9.
    Hill, M. R., M. A. Simon, D. Valdez-Jasso, W. Zhang, H. C. Champion, and M. S. Sacks. Structural and mechanical adaptations of right ventricle free wall myocardium to pressure overload. Ann. Biomed. Eng. 42(12):2451–2465, 2014.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Holzapfel, G. A., and R. W. Ogden. Constitutive modelling of passive myocardium: a structurally based framework for material characterization. Philos. Trans. A Math. Phys. Eng. Sci. 367:3445–3475, 2009.CrossRefPubMedGoogle Scholar
  11. 11.
    Huang, Y., O. Kawaguchi, B. Zeng, R. A. Carrington, C. J. Horam, T. Yuasa, N. Abdul-Hussein, and S. N. Hunyor. A stable ovine congestive heart failure model a suitable substrate for left ventricular assist device assessment. ASAIO J. 43(5):M414, 1997.CrossRefGoogle Scholar
  12. 12.
    Dixon, J. A., and F. G. Spinale. Large animal models of heart failure a critical link in the translation of basic science to clinical practice. Circ. Heart Fail. 2(3):262–271, 2009.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Kindberg, K., H. Haraldsson, A. Sigfridsson, J. Engvall, N. B. Ingels, T. Ebbers, and M. Karlsson. Myocardial strains from 3D displacement encoded magnetic resonance imaging. BMC Med. Imaging 12:9, 2012.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Kohl, P., P. Hunter, and D. Noble. Stretch-induced changes in heart rate and rhythm: clinical observations, experiments and mathematical models. Prog. Biophys. Mol. Biol. 71:91–138, 1999.CrossRefPubMedGoogle Scholar
  15. 15.
    Kourliouros, A., I. Savelieva, A. Kiotsekoglou, M. Jahangiri, and J. Camm. Current concepts in the pathogenesis of atrial fibrillation. Am. Heart J. 157:243–252, 2009.CrossRefPubMedGoogle Scholar
  16. 16.
    Lee, L. C., S. T. Wall, D. Klepach, L. Ge, Z. Zhang, R. J. Lee, A. Hinson, J. H. Gorman, R. C. Gorman, and J. M. Guccione. Algisyl-LVR™ with coronary artery bypass grafting reduces left ventricular wall stress and improves function in the failing human heart. Int. J. Cardiol. 168:2022–2028, 2013.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Leor, J., S. Aboulafia-Etzion, A. Dar, L. Shapiro, I. M. Barbash, A. Battler, Y. Granot, and S. Cohen. Bioengineered cardiac grafts: a new approach to repair the infarcted myocardium? Circulation 102:III-56–III-61, 2000.CrossRefGoogle Scholar
  18. 18.
    Mojsejenko, D., J. R. McGarvey, S. M. Dorsey, J. H. Gorman, III, J. A. Burdick, J. J. Pilla, R. C. Gorman, and J. F. Wenk. Estimating passive mechanical properties in a myocardial infarction using MRI and finite element simulations. Biomech. Model. Mechanobiol. 14:633–647, 2014.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Moorman, A., S. Webb, N. A. Brown, W. Lamers, and R. H. Anderson. Development of the heart: (1) formation of the cardiac chambers and arterial trunks. Heart 89:806–814, 2003.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Nikou, A., S. M. Dorsey, J. R. McGarvey, J. H. Gorman, III, J. A. Burdick, J. J. Pilla, R. C. Gorman, and J. F. Wenk. Computational modeling of healthy myocardium in diastole. Ann. Biomed. Eng. 1–13:980–992, 2015.Google Scholar
  21. 21.
    Quinn, T. A. The importance of non-uniformities in mechano-electric coupling for ventricular arrhythmias. J. Interv. Card. Electrophysiol. 39:25–35, 2014.CrossRefPubMedGoogle Scholar
  22. 22.
    Ravens, U. Mechano-electric feedback and arrhythmias. Prog. Biophys. Mol. Biol. 82:255–266, 2003.CrossRefPubMedGoogle Scholar
  23. 23.
    Robertson, D., and D. Cook. Unrealistic statistics: how average constitutive coefficients can produce non-physical results. J. Mech. Behav. Biomed. Mater. 40:234–239, 2014.CrossRefPubMedGoogle Scholar
  24. 24.
    Sommer, G., A. J. Schriefl, M. Andrä, M. Sacherer, C. Viertler, H. Wolinski, and G. A. Holzapfel. Biomechanical properties and microstructure of human ventricular myocardium. Acta Biomater. 24:172–192, 2015.CrossRefPubMedGoogle Scholar
  25. 25.
    Sylva, M., M. J. van den Hoff, and A. F. Moorman. Development of the human heart. Am. J. Med. Genet. Part A 164:1347–1371, 2014.CrossRefGoogle Scholar
  26. 26.
    Voelkel, N. F., R. A. Quaife, L. A. Leinwand, R. J. Barst, M. D. McGoon, D. R. Meldrum, J. Dupuis, C. S. Long, L. J. Rubin, F. W. Smart, Y. J. Suzuki, M. Gladwin, E. M. Denholm, D. B. Gail, L. National Heart, and Blood Institute Working Group on and F. Molecular Mechanisms of Right Heart. Right ventricular function and failure: report of a National Heart, Lung, and Blood Institute working group on cellular and molecular mechanisms of right heart failure. Circulation 114:1883–1891, 2006.CrossRefPubMedGoogle Scholar
  27. 27.
    Wang, F., and J. Guan. Cellular cardiomyoplasty and cardiac tissue engineering for myocardial therapy. Adv. Drug Deliv. Rev. 62:784–797, 2010.CrossRefPubMedGoogle Scholar
  28. 28.
    Wang, B., A. Borazjani, M. Tahai, A. L. de Jongh Curry, D. T. Simionescu, J. Guan, F. To, S. H. Elder, and J. Liao. Fabrication of cardiac patch with decellularized porcine myocardial scaffold and bone marrow mononuclear cells. J. Biomed. Mater. Res. Part A 94:1100–1110, 2010.Google Scholar

Copyright information

© Biomedical Engineering Society 2016

Authors and Affiliations

  • Shahnaz Javani
    • 1
  • Matthew Gordon
    • 1
  • Ali N. Azadani
    • 1
  1. 1.The DU Cardiac Biomechanics Laboratory, Department of Mechanical and Materials EngineeringUniversity of DenverDenverUSA

Personalised recommendations