Advertisement

Annals of Biomedical Engineering

, Volume 44, Issue 11, pp 3359–3371 | Cite as

Restoration of Thickness, Density, and Volume for Highly Blurred Thin Cortical Bones in Clinical CT Images

  • Amirreza Pakdel
  • Michael Hardisty
  • Jeffrey Fialkov
  • Cari Whyne
Article

Abstract

In clinical CT images containing thin osseous structures, accurate definition of the geometry and density is limited by the scanner’s resolution and radiation dose. This study presents and validates a practical methodology for restoring information about thin bone structure by volumetric deblurring of images. The methodology involves 2 steps: a phantom-free, post-reconstruction estimation of the 3D point spread function (PSF) from CT data sets, followed by iterative deconvolution using the PSF estimate. Performance of 5 iterative deconvolution algorithms, blind, Richardson–Lucy (standard, plus Total Variation versions), modified residual norm steepest descent (MRNSD), and Conjugate Gradient Least-Squares were evaluated using CT scans of synthetic cortical bone phantoms. The MRNSD algorithm resulted in the highest relative deblurring performance as assessed by a cortical bone thickness error (0.18 mm) and intensity error (150 HU), and was subsequently applied on a CT image of a cadaveric skull. Performance was compared against micro-CT images of the excised thin cortical bone samples from the skull (average thickness 1.08 ± 0.77 mm). Error in quantitative measurements made from the deblurred images was reduced 82% (p < 0.01) for cortical thickness and 55% (p < 0.01) for bone mineral mass. These results demonstrate a significant restoration of geometrical and radiological density information derived for thin osseous features.

Keywords

Quantitative image analysis Computed tomography (CT) Cortical thickness and intensity Point spread function Deconvolution 

Notes

Acknowledgements

This study was funded by the Natural Science and Engineering Research Council of Canada and the Ontario Graduate Scholarship.

References

  1. 1.
    Baino, F. Biomaterials and implants for orbital floor repair. Acta Biomater. 7:3248–3266, 2011.CrossRefPubMedGoogle Scholar
  2. 2.
    Bardsley, J. M. Applications of a nonnegatively constrained iterative method with statistically based stopping rules to CT, PET, and SPECT imaging. Electron. Trans. Numer. Anal. 38:34–43, 2011.Google Scholar
  3. 3.
    Bardsley, J. M., and J. G. Nagy. Covariance-preconditioned iterative methods for nonnegatively constrained astronomical imaging. SIAM J. Matrix Anal. Appl. 27:1184–1197, 2006.CrossRefGoogle Scholar
  4. 4.
  5. 5.
    Boone, J. M. Determination of the presampled MTF in computed tomography. Med. Phys. 28:356–360, 2001.CrossRefPubMedGoogle Scholar
  6. 6.
    Chang, P. S.-H., T. H. Parker, C. W. Patrick, and M. J. Miller. The accuracy of stereolithography in planning craniofacial bone replacement. J. Craniofac. Surg. 14:164–170, 2003.CrossRefPubMedGoogle Scholar
  7. 7.
    Dey, N., L. Blanc-Feraud, C. Zimmer, P. Roux, Z. Kam, J.-C. Olivo-Marin, and J. Zerubia. Richardson–Lucy algorithm with total variation regularization for 3D confocal microscope deconvolution. Microsc. Res. Tech. 69:260–266, 2006.CrossRefPubMedGoogle Scholar
  8. 8.
    Erlandsson, K., I. Buvat, P. H. Pretorius, B. A. Thomas, and B. F. Hutton. A review of partial volume correction techniques for emission tomography and their applications in neurology, cardiology and oncology. Phys. Med. Biol. 57:R119–R159, 2012.CrossRefPubMedGoogle Scholar
  9. 9.
    Fish, D. A., J. G. Walker, A. M. Brinicombe, and E. R. Pike. Blind deconvolution by means of the Richardson–Lucy algorithm. J. Opt. Soc. Am. A 12:58, 1995.CrossRefGoogle Scholar
  10. 10.
    Geleijns, J., and R. Irwan. Radiation Dose from Multidetector CTPractical Approaches to Dose Reduction: Toshiba Perspective, Berlin: Springer, 2012.Google Scholar
  11. 11.
    Gervaise, A., B. Osemont, S. Lecocq, A. Noel, E. Micard, J. Felblinger, and A. Blum. CT image quality improvement using Adaptive Iterative Dose Reduction with wide-volume acquisition on 320-detector CT. Eur. Radiol. 22:295–301, 2012.CrossRefPubMedGoogle Scholar
  12. 12.
    Hansen, P. C., J. G. Nagy, and D. O’Leary. Deblurring Images: Matrices, Spectra, and Filtering. Fundamentals of Algorithms, Vol. 3. Philadelphia: SIAM, 2006.CrossRefGoogle Scholar
  13. 13.
    Helgason, B., F. Taddei, E. Schileo, L. Cristofolini, M. Viceconti, H. Pálsson, and S. Brynjólfsson. A modified method for assigning material properties to FE models of bones. Med. Eng. Phys. 30:444–453, 2008.CrossRefPubMedGoogle Scholar
  14. 14.
    Hsieh, J. Computed Tomography (2nd ed.). Bellingham: SPIE, 2009. doi: 10.1117/3.817303.Google Scholar
  15. 15.
    Hsieh, J., B. Nett, Z. Yu, K. Sauer, J.-B. Thibault, and C. A. Bouman. Recent advances in CT image reconstruction. Curr. Radiol. Rep. 1:39–51, 2013.CrossRefGoogle Scholar
  16. 16.
    Irwan, B., S. Nakanishi, and A. Blum. AIDR 3D–reduces dose and simultaneously improves image quality. Toshiba Med. Syst. Whitepaper 1–8, 2012. http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:AIDR+3D+-+Reduces+Dose+and+Simultaneously+Improves+Image+Quality#0.
  17. 17.
    Jiang, M., G. Wang, M. W. Skinner, J. T. Rubinstein, and M. W. Vannier. Blind deblurring of spiral CT images. IEEE Trans. Med. Imaging 22:837–845, 2003.CrossRefPubMedGoogle Scholar
  18. 18.
    Kawata, Y., Y. Nakaya, N. Niki, H. Ohmatsu, K. Eguchi, M. Kaneko, and N. Moriyama. Measurement of three-dimensional point spread functions in multidetector-row CT., 2008.Google Scholar
  19. 19.
    Kobayashi, F., O. Sasaki, S. Nakajima, and J. Ito. Measurement of layer thickness using spread width of longitudinal image in helical CT. Oral Radiol. 15:85–93, 1999.CrossRefGoogle Scholar
  20. 20.
    Lagendijk, R. L., J. Biemond, and D. E. Boekee. Identification and restoration of noisy blurred images using the expectation-maximization algorithm. IEEE Trans. Acoust. 38:1180–1191, 1990.CrossRefGoogle Scholar
  21. 21.
    Lohfeld, S., V. Barron, and P. E. McHugh. Biomodels of bone: a review. Ann. Biomed. Eng. 33:1295–1311, 2005.CrossRefPubMedGoogle Scholar
  22. 22.
    Lucy, L. B. An iterative technique for the rectification of observed distributions. Astron. J. 79:745, 1974.CrossRefGoogle Scholar
  23. 23.
    Maloul, A., J. Fialkov, and C. Whyne. The impact of voxel size-based inaccuracies on the mechanical behavior of thin bone structures. Ann. Biomed. Eng. 39:1092–1100, 2011.CrossRefPubMedGoogle Scholar
  24. 24.
    Meijering, E. H. W., W. J. Niessen, J. P. W. Pluim, and M. A. Viergever. Quantitative comparison of sinc-approximating kernels for medical image interpolation., 1999.Google Scholar
  25. 25.
    Meinel, J. F., G. Wang, M. Jiang, T. Frei, M. Vannier, and E. Hoffman. Spatial variation of resolution and noise in multi-detector row spiral CT. Acad. Radiol. 10:607–613, 2003.CrossRefPubMedGoogle Scholar
  26. 26.
    Mustafa, S. F., P. L. Evans, A. Bocca, D. W. Patton, A. W. Sugar, and P. W. Baxter. Customized titanium reconstruction of post-traumatic orbital wall defects: a review of 22 cases. Int. J. Oral Maxillofac. Surg. 40:1357–1362, 2011.CrossRefPubMedGoogle Scholar
  27. 27.
    Newman, D. L., G. Dougherty, A. AlObaid, and H. AlHajrasy. Limitations of clinical CT in assessing cortical thickness and density. Phys. Med. Biol. 43:619–626, 1998.CrossRefPubMedGoogle Scholar
  28. 28.
    Nunery, W. R., P. J. Timoney, and H. B. H. Lee. General Principles of Management of Orbital Fractures. In: Smith and Nesi’s Ophthalmic Plastic and Reconstructive Surgery, edited by E. H. Black, F. A. Nesi, G. J. Gladstone, and M. R. Levine. New York: Springer, 2012. doi: 10.1007/978-1-4614-0971-7.Google Scholar
  29. 29.
    Ohkubo, M., S. Wada, A. Kayugawa, T. Matsumoto, and K. Murao. Image filtering as an alternative to the application of a different reconstruction kernel in CT imaging: feasibility study in lung cancer screening. Med. Phys. 38:3915, 2011.CrossRefPubMedGoogle Scholar
  30. 30.
    Pakdel, A., J. G. Mainprize, N. Robert, J. Fialkov, and C. M. Whyne. Model-based PSF and MTF estimation and validation from skeletal clinical CT images. Med. Phys. 41:011906, 2014.CrossRefPubMedGoogle Scholar
  31. 31.
    Pakdel, A., J. G. Mainprize, N. Robert, J. Fialkov, and C. M. Whyne. Model-based PSF and MTF estimation and validation from skeletal clinical CT images. Med. Phys. 41:11906, 2014.CrossRefGoogle Scholar
  32. 32.
    Pakdel, A., N. Robert, J. Fialkov, A. Maloul, and C. Whyne. Generalized method for computation of true thickness and x-ray intensity information in highly blurred sub-millimeter bone features in clinical CT images. Phys. Med. Biol. 57:8099–8116, 2012.CrossRefPubMedGoogle Scholar
  33. 33.
    Papadopoulos, M. A., P. K. Christou, P. K. Christou, A. E. Athanasiou, P. Boettcher, H. F. Zeilhofer, R. Sader, and N. A. Papadopulos. Three-dimensional craniofacial reconstruction imaging. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endodontol. 93:382–393, 2002.CrossRefGoogle Scholar
  34. 34.
    Pinheiro, M., and J. L. Alves. A new level-set based protocol for accurate bone segmentation from CT imaging. ArXiv e-prints, 2015.Google Scholar
  35. 35.
    Prevrhal, S., K. Engelke, and W. A. Kalender. Accuracy limits for the determination of cortical width and density: the influence of object size and CT imaging parameters. Phys. Med. Biol. 44:751–764, 1999.CrossRefPubMedGoogle Scholar
  36. 36.
    Richardson, W. H. Bayesian-based iterative method of image restoration. J. Opt. Soc. Am. 62:55, 1972.CrossRefGoogle Scholar
  37. 37.
    Rollano-Hijarrubia, E., R. Manniesing, and W. J. Niessen. Selective deblurring for improved calcification visualization and quantification in carotid CT angiography: validation using micro-CT. IEEE Trans. Med. Imaging 28:446–453, 2009.CrossRefPubMedGoogle Scholar
  38. 38.
    Schmit, G. Deconvolution in 3D: An ImageJ Plugin. Masters Thesis at Biomedical Image Group, École Polytechnique Fédérale de Lausanne, 2007.Google Scholar
  39. 39.
    Schneider, C. A., W. S. Rasband, and K. W. Eliceiri. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9:671–675, 2012.CrossRefPubMedGoogle Scholar
  40. 40.
    Schwarzband, G., and N. Kiryati. The point spread function of spiral CT. Phys. Med. Biol. 50:5307–5322, 2005.CrossRefPubMedGoogle Scholar
  41. 41.
    Silva, A. C., H. J. Lawder, A. Hara, J. Kujak, and W. Pavlicek. Innovations in CT dose reduction strategy: application of the adaptive statistical iterative reconstruction algorithm. AJR. Am. J. Roentgenol. 194:191–199, 2010.CrossRefPubMedGoogle Scholar
  42. 42.
    Starck, J. L., E. Pantin, and F. Murtagh. Deconvolution in astronomy: a review. Publ. Astron. Soc. Pacific 114:1051–1069, 2002.CrossRefGoogle Scholar
  43. 43.
    Szwedowski, T. D. T. D. Development and validation of a subject-specific finite element model of the human craniofacial skeleton., 2007. http://www.csa.com/partners/viewrecord.php?requester=gs&amp;collection=TRD&amp;recid=9113853MT.
  44. 44.
    Thibault, J.-B., K. D. Sauer, C. A. Bouman, and J. Hsieh. A three-dimensional statistical approach to improved image quality for multislice helical CT. Med. Phys. 34:4526, 2007.CrossRefPubMedGoogle Scholar
  45. 45.
    Treece, G. M., A. H. Gee, P. M. Mayhew, and K. E. S. Poole. High resolution cortical bone thickness measurement from clinical CT data. Med. Image Anal. 14:276–290, 2010.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Varghese, B., D. Short, R. Penmetsa, T. Goswami, and T. Hangartner. Computed-tomography-based finite-element models of long bones can accurately capture strain response to bending and torsion. J. Biomech. 44:1374–1379, 2011.CrossRefPubMedGoogle Scholar
  47. 47.
    Vio, R., J. Bardsley, and W. Wamsteker. Least-squares methods with Poissonian noise: analysis and comparison with the Richardson-Lucy algorithm. Astron. Astrophys. 436:741–755, 2005.CrossRefGoogle Scholar
  48. 48.
    Vogel, C. R. Computational Methods for Inverse Problems. Philadelphia: SIAM, 2002.CrossRefGoogle Scholar
  49. 49.
    Wang, G., M. W. Vannier, M. W. Skinner, M. G. P. Cavalcanti, and G. W. Harding. Spiral CT image deblurring for cochlear implantation. IEEE Trans. Med. Imaging 17:251–262, 1998.CrossRefPubMedGoogle Scholar
  50. 50.
    Westin, C. F., A. Bhalerao, H. Knutsson, and R. Kikinis. Using local 3D structure for segmentation of bone from computer tomography images. Comput. Vis. Pattern Recogn. 1997. doi: 10.1109/CVPR.1997.609418.Google Scholar
  51. 51.
    Wildberger, J. E., A. H. Mahnken, T. Flohr, R. Raupach, C. Weiss, R. W. Günther, and S. Schaller. Spatial domain image filtering in computed tomography: feasibility study in pulmonary embolism. Eur. Radiol. 13:717–723, 2003.PubMedGoogle Scholar
  52. 52.
    Zannoni, C., R. Mantovani, and M. Viceconti. Material properties assignment to finite element models of bone structures: a new method. Med. Eng. Phys. 20:735–740, 1998.CrossRefPubMedGoogle Scholar

Copyright information

© Biomedical Engineering Society 2016

Authors and Affiliations

  • Amirreza Pakdel
    • 1
  • Michael Hardisty
    • 2
  • Jeffrey Fialkov
    • 2
    • 4
  • Cari Whyne
    • 1
    • 2
    • 3
  1. 1.Institute of Biomaterials and Biomedical EngineeringUniversity of TorontoTorontoCanada
  2. 2.Sunnybrook Health Sciences CenterTorontoCanada
  3. 3.Faculty of MedicineUniversity of TorontoTorontoCanada
  4. 4.Division of Plastic and Reconstructive SurgeryUniversity of TorontoTorontoCanada

Personalised recommendations