Advertisement

Annals of Biomedical Engineering

, Volume 44, Issue 11, pp 3384–3397 | Cite as

Rapid Fabrication of a Cell-Seeded Collagen Gel-Based Tubular Construct that Withstands Arterial Pressure

Rapid Fabrication of a Gel-Based Media Equivalent
  • Ho-Yi Tuan-Mu
  • Po-Ching Lu
  • Pei-Yuan Lee
  • Chien-Chih Lin
  • Chun-Jung Chen
  • Lynn L.H. Huang
  • Jia-Horng Lin
  • Jin-Jia Hu
Article

Abstract

Based on plastically compressed cell-seeded collagen gels, we fabricated a small-diameter tubular construct that withstands arterial pressure without prolonged culture in vitro. Specifically, to mimic the microstructure of vascular media, the cell-seeded collagen gel was uniaxially stretched prior to plastic compression to align collagen fibers and hence cells in the gel. The resulting gel sheet was then wrapped around a custom-made multi-layered braided tube to form aligned tubular constructs whereas the gel sheet prepared similarly but without uniaxial stretching formed control constructs. With the braided tube, fluid in the gel construct was further removed by vacuum suction aiming to consolidate the concentric layers of the construct. The construct was finally treated with transglutaminase. Both SEM and histology confirmed the absence of gaps in the wall of the construct. Particularly, cells in the wall of the aligned tubular construct were circumferentially aligned. The enzyme-mediated crosslinking increased burst pressure of both the constructs significantly; the extent of the increase of burst pressure for the aligned tubular construct was greater than that for the control counterpart. Increasing crosslinking left the compliance of the aligned tubular construct unchanged but reduced that of the control construct. Cells remained viable in transglutaminase-treated plastically compressed gels after 6 days in culture. This study demonstrated that by combining stretch-induced fiber alignment, plastic compression, and enzyme-mediated crosslinking, a cell-seeded collagen gel-based tubular construct with potential to be used as vascular media can be made within 3 days.

Keywords

Plastic compression Stretch-induced fiber alignment Transglutaminase-mediated crosslinking Cell-seeded collagen gels Vascular tissue engineering Mechanical properties Vascular mechanics 

Notes

Acknowledgment

Financial supports from the National Science Council (NSC102-2221-E-006-028) and the National Health Research Institute (NHRI-EX103-10217EC) in Taiwan are gratefully acknowledged.

Conflict of Interest

The author declares that he have no conflict of interests.

Supplementary material

10439_2016_1645_MOESM1_ESM.pdf (416 kb)
Supplementary material 1 (PDF 416 kb)

References

  1. 1.
    Abou Neel, E. A., U. Cheema, J. C. Knowles, R. A. Brown, and S. N. Nazhat. Use of multiple unconfined compression for control of collagen gel scaffold density and mechanical properties. Soft Matter 2:986–992, 2006.CrossRefGoogle Scholar
  2. 2.
    Barocas, V. H., T. S. Girton, and R. T. Tranquillo. Engineered alignment in media equivalents: magnetic prealignment and Mandrel compaction. J. Biomech. Eng. Trans. ASME 120:660–666, 1998.CrossRefGoogle Scholar
  3. 3.
    Bell, E., H. P. Ehrlich, D. J. Buttle, and T. Nakatsuji. Living tissue formed in vitro and accepted as skin-equivalent tissue of full thickness. Science 211:1052–1054, 1981.CrossRefPubMedGoogle Scholar
  4. 4.
    Bell, E., B. Ivarsson, and C. Merrill. Production of a tissue-like structure by contraction of collagen lattices by human fibroblasts of different proliferative potential in vitro. Proc. Natl. Acad. Sci. U.S.A. 76:1274–1278, 1979.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Bott, K., Z. Upton, K. Schrobback, M. Ehrbar, J. A. Hubbell, M. P. Lutolf, and S. C. Rizzi. The effect of matrix characteristics on fibroblast proliferation in 3D gels. Biomaterials 31:8454–8464, 2010.CrossRefPubMedGoogle Scholar
  6. 6.
    Brown, R. A., M. Wiseman, C. B. Chuo, U. Cheema, and S. N. Nazhat. Ultrarapid engineering of biomimetic materials and tissues: fabrication of nano- and microstructures by plastic compression. Adv. Funct. Mater. 15:1762–1770, 2005.CrossRefGoogle Scholar
  7. 7.
    Chaudhuri, O., S. T. Koshy, C. B. da Cunha, J. W. Shin, C. S. Verbeke, K. H. Allison, and D. J. Mooney. Extracellular matrix stiffness and composition jointly regulate the induction of malignant phenotypes in mammary epithelium. Nat. Mater. 13:970–978, 2014.CrossRefPubMedGoogle Scholar
  8. 8.
    Cheema, U., and R. A. Brown. Rapid fabrication of living tissue models by collagen plastic compression: understanding three-dimensional cell matrix repair. Adv. Wound Care (New Rochelle) 2:176–184, 2013.CrossRefGoogle Scholar
  9. 9.
    Dahl, S. L. M., C. Rhim, Y. C. Song, and L. E. Niklason. Mechanical properties and compositions of tissue engineered and native arteries. Ann. Biomed. Eng. 35:348–355, 2007.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Elbjeirami, W. M., E. O. Yonter, B. C. Starcher, and J. L. West. Enhancing mechanical properties of tissue-engineered constructs via lysyl oxidase crosslinking activity. J. Biomed. Mater. Res. A 66A:513–521, 2003.CrossRefGoogle Scholar
  11. 11.
    Engelmayr, G. C., D. K. Hildebrand, F. W. H. Sutherland, J. E. Mayer, and M. S. Sacks. A novel bioreactor for the dynamic flexural stimulation of tissue engineered heart valve biomaterials. Biomaterials 24:2523–2532, 2003.CrossRefPubMedGoogle Scholar
  12. 12.
    Garcia, Y., R. Collighan, M. Griffin, and A. Pandit. Assessment of cell viability in a three-dimensional enzymatically cross-linked collagen scaffold. J. Mater. Sci. Mater. Med. 18:1991–2001, 2007.CrossRefPubMedGoogle Scholar
  13. 13.
    Gauvin, R., R. Parenteau-Bareil, D. Larouche, H. Marcoux, F. Bisson, A. Bonnet, F. A. Auger, S. Bolduc, and L. Germain. Dynamic mechanical stimulations induce anisotropy and improve the tensile properties of engineered tissues produced without exogenous scaffolding. Acta Biomater. 7:3294–3301, 2011.CrossRefPubMedGoogle Scholar
  14. 14.
    Ghezzi, C. E., B. Marelli, N. Muja, and S. N. Nazhat. Immediate production of a tubular dense collagen construct with bioinspired mechanical properties. Acta Biomater. 8:1813–1825, 2012.CrossRefPubMedGoogle Scholar
  15. 15.
    Hadjipanayi, E., R. A. Brown, and V. Mudera. Interface integration of layered cottagen scaffolds with defined matrix stiffness: implications for sheet-based tissue engineering. J. Tissue Eng Regen. Med. 3:230–241, 2009.CrossRefPubMedGoogle Scholar
  16. 16.
    Hadjipanayi, E., V. Mudera, and R. A. Brown. Close dependence of fibroblast proliferation on collagen scaffold matrix stiffness. J. Tissue Eng Regen. Med. 3:77–84, 2009.CrossRefPubMedGoogle Scholar
  17. 17.
    Hadjipanayi, E., V. Mudera, and R. A. Brown. Guiding cell migration in 3D: a collagen matrix with graded directional stiffness. Cell Motil. Cytoskelet. 66:121–128, 2009.CrossRefGoogle Scholar
  18. 18.
    O’Halloran, D. M., J. C. Russell, M. Griffin, and A. S. Pandit. Characterization of a microbial transglutaminase cross-linked type II collagen scaffold. Tissue Eng. 12:1467–1474, 2006.CrossRefGoogle Scholar
  19. 19.
    Herchenhan, A., N. S. Kalson, D. F. Holmes, P. Hill, K. E. Kadler, and L. Margetts. Tenocyte contraction induces crimp formation in tendon-like tissue. Biomech. Model. Mechanobiol. 11:449–459, 2012.CrossRefPubMedGoogle Scholar
  20. 20.
    Hu, J. J., W. C. Chao, P. Y. Lee, and C. H. Huang. Construction and characterization of an electrospun tubular scaffold for small-diameter tissue-engineered vascular grafts: a scaffold membrane approach. J. Mech. Behav. Biomed. Mater. 13:140–155, 2012.CrossRefPubMedGoogle Scholar
  21. 21.
    Hu, J. J., J. D. Humphrey, and A. T. Yeh. Characterization of engineered tissue development under biaxial stretch using nonlinear optical microscopy. Tissue Eng. A 15:1553–1564, 2009.CrossRefGoogle Scholar
  22. 22.
    Huang, D., T. R. Chang, A. Aggarwal, R. C. Lee, and H. P. Ehrlich. Mechanisms and dynamics of mechanical strengthening in ligament-equivalent fibroblast-populated collagen matrices. Ann. Biomed. Eng. 21:289–305, 1993.CrossRefPubMedGoogle Scholar
  23. 23.
    Humphrey, J. D. Cardiovascular solid mechanics: cells, tissues, and organs. New York: Springer, p. xvi, 2002; (757 p).CrossRefGoogle Scholar
  24. 24.
    Isenberg, B. C., and R. T. Tranquillo. Long-term cyclic distention enhances the mechanical properties of collagen-based media-equivalents. Ann. Biomed. Eng. 31:937–949, 2003.CrossRefPubMedGoogle Scholar
  25. 25.
    Konig, G., T. N. McAllister, N. Dusserre, S. A. Garrido, C. Iyican, A. Marini, A. Fiorillo, H. Avila, W. Wystrychowski, K. Zagalski, M. Maruszewski, A. L. Jones, L. Cierpka, L. M. de la Fuente, and N. L’Heureux. Mechanical properties of completely autologous human tissue engineered blood vessels compared to human saphenous vein and mammary artery. Biomaterials 30:1542–1550, 2009.CrossRefPubMedGoogle Scholar
  26. 26.
    Kumar, V. A., J. M. Caves, C. A. Haller, E. B. Dai, L. Y. Liu, S. Grainger, and E. L. Chaikof. Acellular vascular grafts generated from collagen and elastin analogs. Acta Biomater. 9:8067–8074, 2013.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Lee, P. F., Y. Bai, R. L. Smith, K. J. Bayless, and A. T. Yeh. Angiogenic responses are enhanced in mechanically and microscopically characterized, microbial transglutaminase crosslinked collagen matrices with increased stiffness. Acta Biomater. 9:7178–7190, 2013.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Lee, E. J., J. W. Holmes, and K. D. Costa. Remodeling of engineered tissue anisotropy in response to altered loading conditions. Ann. Biomed. Eng. 36:1322–1334, 2008.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    L’Heureux, N., L. Germain, R. Labbe, and F. A. Auger. In vitro construction of a human blood vessel from cultured vascular cells: a morphologic study. J. Vasc. Surg. 17:499–509, 1993.CrossRefPubMedGoogle Scholar
  30. 30.
    Lo, C. M., H. B. Wang, M. Dembo, and Y. L. Wang. Cell movement is guided by the rigidity of the substrate. Biophys. J . 79:144–152, 2000.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Long, J. L., and R. T. Tranquillo. Elastic fiber production in cardiovascular tissue-equivalents. Matrix Biol. 22:339–350, 2003.CrossRefPubMedGoogle Scholar
  32. 32.
    Mi, S. L., V. V. Khutoryanskiy, R. R. Jones, X. P. Zhu, I. W. Hamley, and C. J. Connon. Photochemical cross-linking of plastically compressed collagen gel produces an optimal scaffold for corneal tissue engineering. J. Biomed. Mater. Res. A 99:1–8, 2011.CrossRefPubMedGoogle Scholar
  33. 33.
    Micol, L. A., M. Ananta, E. M. Engelhardt, V. C. Mudera, R. A. Brown, J. A. Hubbell, and P. Frey. High-density collagen gel tubes as a matrix for primary human bladder smooth muscle cells. Biomaterials 32:1543–1548, 2011.CrossRefPubMedGoogle Scholar
  34. 34.
    Mohammadi, H., P. D. Arora, C. A. Simmons, P. A. Janmey, and C. A. McCulloch. Inelastic behaviour of collagen networks in cell-matrix interactions and mechanosensation. J. R. Soc. Interface 12:20141074, 2015.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Mol, A., N. J. B. Driessen, M. C. M. Rutten, S. P. Hoerstrup, C. V. C. Bouten, and F. P. T. Baaijens. Tissue engineering of human heart valve leaflets: a novel bioreactor for a strain-based conditioning approach. Ann. Biomed. Eng. 33:1778–1788, 2005.CrossRefPubMedGoogle Scholar
  36. 36.
    Orban, J. M., L. B. Wilson, J. A. Kofroth, M. S. El-Kurdi, T. M. Maul, and D. A. Vorp. Crosslinking of collagen gels by transglutaminase. J. Biomed. Mater. Res. A 68:756–762, 2004.CrossRefPubMedGoogle Scholar
  37. 37.
    Paszek, M. J., N. Zahir, K. R. Johnson, J. N. Lakins, G. I. Rozenberg, A. Gefen, C. A. Reinhart-King, S. S. Margulies, M. Dembo, D. Boettiger, D. A. Hammer, and V. M. Weaver. Tensional homeostasis and the malignant phenotype. Cancer Cell 8:241–254, 2005.CrossRefPubMedGoogle Scholar
  38. 38.
    Roh, J. D., G. N. Nelson, M. P. Brennan, T. L. Mirensky, T. Yi, T. F. Hazlett, G. Tellides, A. J. Sinusas, J. S. Pober, W. M. Saltzman, T. R. Kyriakides, and C. K. Breuer. Small-diameter biodegradable scaffolds for functional vascular tissue engineering in the mouse model. Biomaterials 29:1454–1463, 2008.CrossRefPubMedGoogle Scholar
  39. 39.
    Sallach, R. E., W. Cui, J. Wen, A. Martinez, V. P. Conticello, and E. L. Chaikof. Elastin-mimetic protein polymers capable of physical and chemical crosslinking. Biomaterials 30:409–422, 2009.CrossRefPubMedGoogle Scholar
  40. 40.
    Seliktar, D., R. A. Black, R. P. Vito, and R. M. Nerem. Dynamic mechanical conditioning of collagen-gel blood vessel constructs induces remodeling in vitro. Ann. Biomed. Eng. 28:351–362, 2000.CrossRefPubMedGoogle Scholar
  41. 41.
    Shi, Y. L., and I. Vesely. Fabrication of mitral valve chordae by directed collagen gel shrinkage. Tissue Eng. 9:1233–1242, 2003.CrossRefPubMedGoogle Scholar
  42. 42.
    Soletti, L., Y. Hong, J. Guan, J. J. Stankus, M. S. El-Kurdi, W. R. Wagner, and D. A. Vorp. A bilayered elastomeric scaffold for tissue engineering of small diameter vascular grafts. Acta Biomater. 6:110–122, 2010.CrossRefPubMedGoogle Scholar
  43. 43.
    Syedain, Z. H., L. A. Meier, J. W. Bjork, A. Lee, and R. T. Tranquillo. Implantable arterial grafts from human fibroblasts and fibrin using a multi-graft pulsed flow-stretch bioreactor with noninvasive strength monitoring. Biomaterials 32:714–722, 2011.CrossRefPubMedGoogle Scholar
  44. 44.
    Tranquillo, R. T., T. S. Girton, B. A. Bromberek, T. G. Triebes, and D. L. Mooradian. Magnetically orientated tissue-equivalent tubes: application to a circumferentially orientated media-equivalent. Biomaterials 17:349–357, 1996.CrossRefPubMedGoogle Scholar
  45. 45.
    Tuan-Mu, H. Y., C. H. Yu, and J. J. Hu. On the decellularization of fresh or frozen human umbilical arteries: implications for small-diameter tissue engineered vascular grafts. Ann. Biomed. Eng. 42:1305–1318, 2014.CrossRefPubMedGoogle Scholar
  46. 46.
    Weinberg, C. B., and E. Bell. A blood-vessel model constructed from collagen and cultured vascular cells. Science 231:397–400, 1986.CrossRefPubMedGoogle Scholar
  47. 47.
    Wu, W., R. A. Allen, and Y. D. Wang. Fast-degrading elastomer enables rapid remodeling of a cell-free synthetic graft into a neoartery. Nat. Med. 18:1148–1153, 2012.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Biomedical Engineering Society 2016

Authors and Affiliations

  • Ho-Yi Tuan-Mu
    • 1
  • Po-Ching Lu
    • 2
  • Pei-Yuan Lee
    • 1
    • 3
  • Chien-Chih Lin
    • 4
  • Chun-Jung Chen
    • 4
    • 5
  • Lynn L.H. Huang
    • 5
  • Jia-Horng Lin
    • 2
  • Jin-Jia Hu
    • 1
    • 6
  1. 1.Department of Biomedical EngineeringNational Cheng Kung UniversityTainanTaiwan
  2. 2.Department of Fiber and Composite MaterialsFeng Chia UniversityTaichungTaiwan
  3. 3.Orthopedic DepartmentShowchwan Memorial HospitalChanghuaTaiwan
  4. 4.Scientific Research Division, Life Science GroupNational Synchrotron Radiation Research CenterHsinchuTaiwan
  5. 5.Institute of BiotechnologyNational Cheng Kung UniversityTainanTaiwan
  6. 6.Medical Device Innovation CenterNational Cheng Kung UniversityTainanTaiwan

Personalised recommendations